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Instructor: Athanasios Kottas

Modes of convergence for sequences of random variables

Given a sequence of random variables {X,, : n > 1} and a limiting random variable X, there are
several ways to formulate convergence “X,, =& X as n — oo”. The following four definitions are
commonly used to study limiting results for random variables and stochastic processes.

Almost sure convergence (X,, —*% X).
Let {X,,:n>1} and X be random variables defined on some probability space (2, F,P).
{X,, : n > 1} converges almost surely to X if

P ({w €Q: lim X,(w)= X(w)}) =1.

n—oo

Convergence in rth mean (X, —"~™%" X).
Let {X,,:n>1} and X be random variables defined on some probability space (2, F,P).
{X,, :n>1} converges in mean of order r > 1 (or in rth mean) to X if E(|X]|) < oo for
all n, and

lim E(|X,, — X|") = 0.

n—oo

Convergence in probability (X, —P X).
Let {X,:n >1} and X be random variables defined on some probability space (§2,F,P).
{X, : n > 1} converges in probability to X if for any € > 0,

nh_)rrolo P{we Q| X,(w) — X(w)| >€}) =0.

Convergence in distribution (X, —9 X).
Let {X,, : n > 1} and X be random variables with distribution functions {F}, : n > 1} and F,
respectively. {X,, : n > 1} converges in distribution to X if

lim F,(z) = F(x),

n—oo

for all points x at which F is continuous.

Note that the first three types of convergence require that X,, and X are all defined on the
same probability space, as they include statements involving the (common) probability measure
P. However, convergence in distribution applies to random variables defined possibly on differ-
ent probability spaces, as it only involves the corresponding distribution functions.

It can be shown that:

Almost sure convergence implies convergence in probability.

Convergence in rth mean implies convergence in probability, for any r > 1.
Convergence in probability implies convergence in distribution.

Convergence in rth mean implies convergence in sth mean, for r > s > 1.

No other implications hold without further assumptions on {X,, : n > 1} and/or X.



Convergence theorems for expectations

Monotone convergence theorem: Consider a countable sequence {X,, : n = 1,2,...} of
R" valued random variables defined on the same probability space (2, F, P). Assume that the
sequence is pointwise (or almost surely) increasing, that is, for all n, X, (w) < X,+1(w) for all
w € Q (or all w in an event of probability 1). Denote by X the pointwise (or almost sure) limit
of the sequence {X,, : n =1,2,...}.

e Then, lim, . E(X,) = E(X).

Dominated convergence theorem: Consider a countable sequence {X,, : n =1,2,...} of R—
valued random variables defined on the same probability space (2, F, P). Assume there exists a
random variable Y (also defined on (€2, F, P)) such that | X,| <Y, almost surely for all n, and
E(Y) < cc.

e Then,

—oo < E(liminf X,,) < liminf E(X,,) <limsup E(X,) < E(limsup X,,) < oo

n—00 n—00 n—00 n—o0o

In addition to the assumptions | X,,| <Y, almost surely for all n, and E(Y) < oo, assume that
the sequence {X,, : n = 1,2, ...} converges almost surely to random variable X (also defined on
(Q,F,P)).

e Then, E(|X|) < oo, limy, 00 E(X,,) = E(X), and lim,,_,o E(| X, — X|) =0.

Bounded convergence theorem: Consider a countable sequence {X,, : n = 1,2,...} of R~
valued random variables defined on the same probability space (2, F, P). Assume that the
sequence converges almost surely to random variable X (also defined on (9, F, P)) and that
| X| < M, almost surely for all n, where M is a finite constant.

e Then, E(|X|) < M, lim,, o E(X,) = E(X), and lim,_,o E(|X,, — X|) = 0.



