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Modes of convergence for sequences of random variables

Given a sequence of random variables {Xn : n ≥ 1} and a limiting random variable X, there are
several ways to formulate convergence “Xn → X as n→∞”. The following four definitions are
commonly used to study limiting results for random variables and stochastic processes.

Almost sure convergence (Xn →a.s. X).
Let {Xn : n ≥ 1} and X be random variables defined on some probability space (Ω,F , P ).
{Xn : n ≥ 1} converges almost surely to X if

P
({
ω ∈ Ω : lim

n→∞
Xn(ω) = X(ω)

})
= 1.

Convergence in rth mean (Xn →r−mean X).
Let {Xn : n ≥ 1} and X be random variables defined on some probability space (Ω,F , P ).
{Xn : n ≥ 1} converges in mean of order r ≥ 1 (or in rth mean) to X if E(|Xr

n|) < ∞ for
all n, and

lim
n→∞

E(|Xn −X|r) = 0.

Convergence in probability (Xn →p X).
Let {Xn : n ≥ 1} and X be random variables defined on some probability space (Ω,F , P ).
{Xn : n ≥ 1} converges in probability to X if for any ε > 0,

lim
n→∞

P ({ω ∈ Ω : |Xn(ω)−X(ω)| > ε}) = 0.

Convergence in distribution (Xn →d X).
Let {Xn : n ≥ 1} and X be random variables with distribution functions {Fn : n ≥ 1} and F ,
respectively. {Xn : n ≥ 1} converges in distribution to X if

lim
n→∞

Fn(x) = F (x),

for all points x at which F is continuous.

Note that the first three types of convergence require that Xn and X are all defined on the
same probability space, as they include statements involving the (common) probability measure
P . However, convergence in distribution applies to random variables defined possibly on differ-
ent probability spaces, as it only involves the corresponding distribution functions.

It can be shown that:
Almost sure convergence implies convergence in probability.
Convergence in rth mean implies convergence in probability, for any r ≥ 1.
Convergence in probability implies convergence in distribution.
Convergence in rth mean implies convergence in sth mean, for r > s ≥ 1.
No other implications hold without further assumptions on {Xn : n ≥ 1} and/or X.



Convergence theorems for expectations

Monotone convergence theorem: Consider a countable sequence {Xn : n = 1, 2, ...} of

R+
–valued random variables defined on the same probability space (Ω,F , P ). Assume that the

sequence is pointwise (or almost surely) increasing, that is, for all n, Xn(ω) ≤ Xn+1(ω) for all
ω ∈ Ω (or all ω in an event of probability 1). Denote by X the pointwise (or almost sure) limit
of the sequence {Xn : n = 1, 2, ...}.
• Then, limn→∞ E(Xn) = E(X).

Dominated convergence theorem: Consider a countable sequence {Xn : n = 1, 2, ...} of R–
valued random variables defined on the same probability space (Ω,F , P ). Assume there exists a
random variable Y (also defined on (Ω,F , P )) such that |Xn| ≤ Y , almost surely for all n, and
E(Y ) <∞.
• Then,

−∞ < E(lim inf
n→∞

Xn) ≤ lim inf
n→∞

E(Xn) ≤ lim sup
n→∞

E(Xn) ≤ E(lim sup
n→∞

Xn) <∞

In addition to the assumptions |Xn| ≤ Y , almost surely for all n, and E(Y ) < ∞, assume that
the sequence {Xn : n = 1, 2, ...} converges almost surely to random variable X (also defined on
(Ω,F , P )).
• Then, E(|X|) <∞, limn→∞ E(Xn) = E(X), and limn→∞ E(|Xn −X|) = 0.

Bounded convergence theorem: Consider a countable sequence {Xn : n = 1, 2, ...} of R–
valued random variables defined on the same probability space (Ω,F , P ). Assume that the
sequence converges almost surely to random variable X (also defined on (Ω,F , P )) and that
|Xn| ≤M , almost surely for all n, where M is a finite constant.
• Then, E(|X|) ≤M , limn→∞ E(Xn) = E(X), and limn→∞ E(|Xn −X|) = 0.


