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Dependent Dirichlet processes

So far we have focused on problems where a single (possibly multivari-
ate) distribution is assigned a nonparametric prior. This is consistent
with the earlier developments in the Bayes nonparametrics literature.

However, in many applications, the objective is modeling a collection
of distributions G = {Gs : s ∈ S}, indexed by s ∈ S — for example,
S might be a discrete, finite set indicating different “groups”, a time
interval, a spatial region, or a covariate space.

Obvious options:

Assume that the distribution is the same everywhere, e.g.,
Gs ≡ G ∼ DP(α,G0) for all s. This is too restrictive!
Assume that the distributions are independent and identically
distributed, e.g., Gs ∼ DP(α,G0) independently for each s. This
is wasteful!

We would like something in between.
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Dependent Dirichlet processes

A similar dilemma arises in parametric models. Recall the random
intercepts model:

yij = θi + εij , εij
i.i.d.∼ N(0, σ2),

θi = η + νi , νi
i.i.d.∼ N(0, τ 2),

with η ∼ N(η0, κ
2).

If τ 2 → 0, we have θi = η for all i , i.e., all means are the same.
“Maximum” borrowing of information across groups.
If τ 2 → ∞, all the means are different (and independent from each
other). No information is borrowed.

In a traditional random effects model, estimating τ 2 provides some-
thing in between (some borrowing of information across effects).

How can we generalize this idea to distributions?

Note that a nonparametric specification for the random effects distri-
bution is not enough, as the distribution of the errors is still Gaussian.

Athanasios Kottas AMS 241, Fall 2015 – Notes 3



1. Dependent Dirichlet processes 2. Hierarchical NPB priors 3. Spatial DPs 4. DDP application

Modeling dependence in collections of random distributions

A number of modeling approaches have been presented in the
literature, including:

Introducing dependence through the baseline distributions of condi-
tionally independent nonparametric priors: for example, product of
mixtures of DPs (refer to Notes 1). Simple but restrictive.

Structured priors for a finite number of distributions through linear
combinations of realizations from independent DPs (e.g., Müller et
al., 2004; Kolossiatis et al., 2013).

Hierarchical nonparametric prior models for finite collections of distri-
butions (Analysis of densities model, ANOVA DDP, hierarchical DP,
nested DP) — discussed later in this set of notes.

Dependent Dirichlet process (DDP): Starting with the stick-breaking
construction of the DP, and replacing the weights and/or atoms with
appropriate stochastic processes on S (MacEachern, 1999; 2000).
Very general procedure, most of the models discussed here can be
framed as DDPs.
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Definition of the dependent Dirichlet process

Recall the constructive definition of the Dirichlet process: G ∼ DP(α,G0)
if and only if

G =
∞∑
`=1

ω`δθ` ,

where the θ` are i.i.d. from G0, and ω1 = z1, ω` = z`
∏`−1

r=1(1− zr ),
` = 2, 3, . . ., with zr i.i.d. Beta(1, α).

To construct a DDP prior for the collection of random distributions,
G = {Gs : s ∈ S}, define Gs as

Gs =
∞∑
`=1

ω`(s)δθ`(s),

with {θ`(s) : s ∈ S}, for ` = 1, 2, ..., independent realizations from a
(centering) stochastic process G0,S defined on S
and stick-breaking weights defined through independent realizations
{zr (s) : s ∈ S}, r = 1, 2, ..., from a stochastic process on S with
marginals zr (s) ∼ Beta(1, α(s)) (or with common α(s) ≡ α).
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Dependent Dirichlet processes

For any fixed s, this construction yields a DP prior for distribution Gs.

The support of DDP priors is studied in Barrientos et al. (2012).

For uncountable index sets S , smoothness (e.g., continuity) properties
of the centering process G0,S and the stochastic process that defines
the weights drive smoothness of DDP realizations.

For instance, for spatial regions S , we typically seek smooth evolution
for the distributions Gs, with the level of dependence between Gs and
Gs′ driven by the distance between spatial sites s and s′.

For specified set A, {Gs(A) : s ∈ S} is a stochastic process with beta
marginals. The covariance between Gs(A) and Gs′(A) can be used to
study the dependence structure under a particular DDP prior.

Effective inference under DDP prior models requires some form of
replicate responses across the observed index points.

As with DP priors, we usually employ the DDP prior to model the
distribution of the parameters in a hierarchical model, resulting in
DDP mixture models.
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“Common-weights” dependent Dirichlet processes

“Common-weights” (or “single-p”) DDP models: the weights do not
depend on s; dependence is induced only from dependence across
atoms in the stick-breaking construction:

Gs =
∞∑
`=1

ω`δθ`(s)

where ω1 = z1, ω` = z`
∏`−1

r=1(1−zr ), ` ≥ 2, with zr i.i.d. Beta(1, α).

Advantage⇒ Computation is relatively simple, since common-weights
DDP mixture models can be written as DP mixtures for an appropriate
baseline distribution.

Disadvantage ⇒ Dependent weights can generate local dependence
structure which is desirable in temporal or spatial applications.

Some applications of common-weights DDP models: De Iorio et al.
(2004); Rodriguez and ter Horst (2008); De Iorio et al. (2009); Di
Lucca et al. (2013); Fronczyk and Kottas (2014a,b).
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“Common-atoms” dependent Dirichlet processes

“Common-atoms” DDP models: the alternative simplification where
the atoms are common to all distributions:

Gs =
∞∑
`=1

ω`(s)δθ`

where the θ` are i.i.d. from G0.

Advantage ⇒ The structure with common atoms across distributions
that have weights that change with s may be attractive in certain
applications. When the dimension of θ is moderate to large, it also re-
duces significantly the number of stochastic processes over S required
for a full DDP specification.

Disadvantage ⇒ Prediction at new s (say, forecasting when s corre-
sponds to discrete time) can be problematic.

Examples of modeling with common-atoms DDP priors: Taddy (2010)
and Nieto-Barajas et al. (2012).
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Dependent Dirichlet processes

Section 2 provides an overview of three classes of nonparametric priors
for finite collections of distributions: ANOVA DDP (De Iorio et al.,
2004); hierarchical DPs (Teh. et al., 2006), which are related to the
“analysis of densities” model (Tomlinson and Escobar, 1999); and
nested DPs (Rodriguez et al., 2008).

Section 3 presents spatial DPs (Gelfand et al., 2005; Kottas et al.,
2008), and Section 4 an application of DDP modeling for risk assess-
ment in developmental toxicity studies (Fronczyk and Kottas, 2014a).

However, this is by no means an exhaustive list: order-depedent DDPs
(Griffin and Steel, 2006); generalized spatial DP (Duan, Guindani and
Gelfand, 2007); kernel stick-breaking processes (Dunson and Park,
2008); dependent Pólya tree regression models (Trippa et al., 2011);
stick-breaking autoregressive processes (Griffin and Steel, 2011); .....
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ANOVA dependent Dirichlet process models

Consider a space S such that s = (s1, . . . , sp) corresponds to a vector
of categorical variables. For instance, in a clinical setting, Gs1,s2 might
correspond to the random effects distribution for patients treated at
levels s1 and s2 of two different drugs.

For example, define ys1,s2,k | Gs1,s2 , σ
2 ∼

∫
N(ys1,s2,k | η, σ2)dGs1,s2 (η)

where

Gs1,s2 =
∞∑
h=1

ωhδθh,s1,s2

with θh,s1,s2 = mh + Ah,s1 + Bh,s2 + ABh,s1,s2 and

mh ∼ Gm
0 , Ah,s1 ∼ GA

0 , Bh,s2 ∼ GB
0 , ABh,s1,s2 ∼ GAB

0 .

Typically Gm
0 , GA

0 , GB
0 and GAB

0 are normal distributions and we
introduce identifiability constrains such as Ah,1 = Bh,1 = 0 and
ABh,1,s2 = ABh,s1,1 = 0.
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ANOVA dependent Dirichlet process models

Note that the atoms of Gs1,s2 have a structure that resembles a two
way ANOVA.

Indeed, the ANOVA-DDP mixture model can be reformulated as a
DP mixture of ANOVA models where, at least in principle, there can
be up to one different ANOVA for each observation:

ys1,s2,k | F , σ2 ∼
∫

N(ys1,s2,k | ds1,s2η, σ
2)dF (η), F ∼ DP(α,G0),

where ds1,s2 is a design vector selecting the appropriate coefficients
from η and G0 = Gm

0 GA
0 G

B
0 GAB

0 .

In practice, just a small number of ANOVA models. If a single
component is used, we recover a parametric ANOVA model.

Rephrasing the ANOVA-DDP model as a DP mixture simplifies
posterior simulation.

Function LDDPdensity in DPpackage can be used to fit ANOVA-DDP
models.
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Hierarchical Dirichlet processes

Consider modeling the distribution of SAT scores on different schools.

Data yij might correspond to the SAT score obtained by student j =
1, . . . ,mi in school i = 1, . . . , n.

Traditionally, this type of data has been modeled using a random
intercept model.

yij | θi ∼ N(θi , σ
2), θi | µ ∼ N(µ, τ 2), µ ∼ N(µ0, κ

2),

where θi is the school-specific random effect.

But, what if the distribution of scores within a school appears to be
(highly) non-Gaussian?
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Hierarchical Dirichlet processes

Hierarchical Dirichlet process (HDP) mixture models allow us to es-
timate the school-specific distribution by identifying latent classes
of students that appear (possibly with different frequencies) in all
schools.

Let

yij | Gi ∼
∫

k(yij | η)dGi (η), Gi | G0 ∼ DP(α,G0), G0 ∼ DP(β,H).

Conditionally on G0, the mixing distribution for each school is an inde-
pendent sample from a DP — dependence across schools is
introduced, since they all share the same baseline measure G0.

This structure is reminiscent of the Gaussian random effects model,
but it is built at the level of the distributions.
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Hierarchical Dirichlet processes

Since G0 is drawn from a DP, it is (a.s.) discrete, G0 =
∑∞
`=1 ω`δφ`

.

Therefore, when we draw the atoms for Gi we are forced to choose
among φ1, φ2, . . ., i.e., we can write Gi as:

Gi =
∞∑
`=1

π`iδφ`

Note that the HDP resembles the structure of a common-atoms DDP
prior model.

The weights assigned to the atoms are not independent. Intuitively,
if φ` has a large weight ω` under G0, then the weight π`i under Gi

will likely be large for every i .

Indeed, πi | ω ∼ DP(α,ω), where πi = (π1i , π2i , . . .) and ω =
{ω` : ` = 1, 2, ...} (see the next page), such that E(π`i | ω) = ω`.
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Hierarchical Dirichlet processes

Assume H is a continuous distribution on R.

Consider a partition (A1, ...,Ar ) of R, and let Ks = {` : φ` ∈ As}, for
s = 1, ..., r , such that (K1, ...,Kr ) is a partition of Z+ = {1, 2, ...}.
(Since H is continuous, the φ` are distinct a.s., and therefore there is
an one-to-one correspondence between the partitions of R and Z+.)

Now, (Gi (A1), ...,Gi (Ar )) | G0 ∼ Dirichlet(αG0(A1), ..., αG0(Ar )), for
each i , that is,(∑

`∈K1

π`i , . . . ,
∑
`∈Kr

π`i

)
| ω ∼ Dirichlet

(
α
∑
`∈K1

ω`, . . . , α
∑
`∈Kr

ω`

)

for any partition (K1, ...,Kr ) of Z+. Hence, πi | ω ∼ DP(α,ω),
where the centering DP distribution ω is a distribution on Z+.
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Hierarchical Dirichlet processes

Using the previous result for partition (K1 = {1, ..., ` − 1},K2 =
{`},K3 = {`+ 1, `+ 2, ...}), we have:

(
∑`−1

s=1 πsi , π`i ,
∑∞

s=`+1 πsi ) | ω ∼ Dirichlet(α
∑`−1

s=1 ωs , αω`, α
∑∞

s=`+1 ωs)

and, using Dirichlet distribution properties, π∗`i = (1−
∑`−1

s=1 πsi )
−1π`i

follows, conditional on ω, a Beta(αω`, α(1−
∑`

s=1 ωs)) distribution.

Therefore, for each i , the π`i admit a stick-breaking representation:
π1i = π∗1i and π`i = π∗`i

∏`−1
s=1(1 − π∗si ), for ` ≥ 2, based on the

Beta distributed variables π∗`i . This structure can be used to obtain
E(π`i | ω) = ω`.

An MCMC sampler can be devised for posterior simulation by com-
posing two Pólya urns, one built from (α,G0) and one from (β,H) —
the resulting MCMC algorithm is similar to the marginal sampler for
DP mixture models, but bookkeeping is harder.
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Nested Dirichlet Processes

Also a model for exchangeable distributions — rather than borrowing
strength by sharing clusters among all distributions, the nested DP
(NDP) borrows information by clustering similar distributions.

An example: assessment for quality of care in hospitals nationwide.

yij : percentage of patients in hospital j = 1, . . . ,mi within state i =
1, . . . , n who received the appropriate antibiotic on admission.
We may want to cluster states with similar distributions of quality
scores, and simultaneously cluster hospitals with similar outcomes.

Let yij | Gi ∼
∫
k(yij | η)dGi (η), where

Gi ∼
K∑

k=1

ωkδG∗k G∗k =
∞∑
`=1

π`kδθ`k ,

where θ`k ∼ H, π`k = u`k
∏

r<`(1− urk) with u`k ∼ Beta(1, β), and
ωk = vk

∏
r<k(1− vr ) with vk ∼ Beta(1, α).
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Nested Dirichlet Processes

In this case, we write {G1, . . . ,Gn} ∼ DP(α,DP(β,H)).

Note that the NDP generates two layers of clustering: states, and
hospitals within groups of states. However, groups of states are con-
ditionally independent from each other.

The NDP is not a common-weights DDP model.

A standard marginal sampler is not feasible in this problem — com-
putation can be carried out using an extension of the blocked Gibbs
sampler.
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The HDP vs. the NDP

G0

G∗1 G∗2

G∗3 G∗4

HDP G1 G1 NDP

G2 G2

G3 G3
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Spatial Dirichlet process models

Spatial data modeling: based on Gaussian processes (distributional
assumption) and stationarity (assumption on the dependence struc-
ture).

Basic model for a spatial random field YD = {Y (s) : s ∈ D}, with
D ⊆ Rd :

Y (s) = µ(s) + θ(s) + ε(s)

µ(s) is a mean process, e.g., µ(s) = x ′(s)β.
θ(s) is a spatial process, typically, a mean 0 isotropic Gaussian process,
i.e., Cov(θ(si ), θ(sj) | σ2, φ) = σ2ρφ(||si − sj ||) = σ2(H(φ))i,j
ε(s) is a pure error (nugget) process, e.g., ε(s) i.i.d. N(0, τ 2).

Induced model for observed sample (point referenced spatial data),
Y = (Y (s1), . . . ,Y (sn)), at sites s(n) = (s1, . . . , sn) in D

Y | β, σ2, φ, τ 2 ∼ N(X ′β, σ2H(φ) + τ 2In).
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Spatial Dirichlet process models

Objective of Bayesian nonparametric modeling: develop prior
models for the distribution of θD = {θ(s) : s ∈ D}, and thus for the
distribution of YD = {Y (s) : s ∈ D}, that relax the Gaussian and
stationarity assumptions.

In general, a fully nonparametric approach requires replicate observa-
tions at each site, Yt = (Yt(s1), . . . ,Yt(sn))′, t = 1, . . . ,T , though
imbalance or missingness in the Yt(si ) can be handled.

Temporal replications available in various applications, e.g., in
epidemiology, environmental contamination, and weather modeling.

Direct application of the methodology for spatial processes (when
replications can be assumed approximately independent).
More generally, extension to spatio-temporal modeling, e.g., through
dynamic spatial process modeling viewing Y (s, t) ≡ Yt(s) as a tem-
porally evolving spatial process (Kottas, Duan and Gelfand, 2008).
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Spatial Dirichlet process models

Spatial Dirichlet process: arises as a dependent DP where G0 is
extended to G0D , a random field over D, e.g., a stationary Gaussian
process — thus, in the DP constructive definition, each θ` is extended
to θ`,D = {θ`(s) : s ∈ D} a realization from G0D , i.e., a random
surface over D.

Hence, the spatial DP is defined as a random process over D

GD =
∞∑
`=1

ω`δθ`,D ,

which is centered at G0D .

A process defined in this way is denoted GD ∼ SDP(α,G0D).
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Spatial Dirichlet process models

Key property: if

θD = {θ(s) : s ∈ D} | GD ∼ GD , GD ∼ SDP(α,G0D)

then for any s(n) = (s1, . . . , sn), GD induces G (s(n)) ≡ G (n), a random

distribution for (θ(s1), . . . , θ(sn)), and G (n) ∼ DP(α,G
(n)
0 ), where

G
(n)
0 ≡ G

(s(n))
0 .

If G0D is a Gaussian process, then G
(s(n))
0 is n-variate normal.
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Spatial Dirichlet process models

For stationary G0D , the smoothness of realizations from SDP(α,G0D)
is determined by the choice of the covariance function of G0D .

For instance, if G0D produces a.s. continuous realizations, then
G (s) − G (s′) → 0 a.s. as ||s − s ′|| → 0.
We can learn about G (s) more from data at neighboring locations than
from data at locations further away (as in usual spatial prediction).

Random process GD is centered at a stationary Gaussian process, but
it is nonstationary, it has nonconstant variance, and it yields non-
Gaussian finite dimensional distributions.

More general spatial DP models?

Allow weights to change with spatial location, i.e., allow realization at
location s to come from a different surface than that for the realization
at location s ′ (Duan, Guindani and Gelfand, 2007).
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Spatial Dirichlet process models

Almost sure discreteness of realizations from GD?
Mix GD against a pure error process K (i.i.d. ε(s) with mean 0 and
variance τ 2) to create random process over D with continuous support.

Spatial DP mixture model: If GD ∼ SDP(α,G0D), θD | GD ∼ GD ,
and YD − θD | τ 2 ∼ K

F
(
YD | GD , τ

2
)

=

∫
K
(
YD − θD | τ 2

)
dGD (θD)

i.e., Y (s) = θ(s) + ε(s); θ(s) from a spatial DP; ε(s), say, i.i.d.
N(0, τ 2) (again, process F is non-Gaussian and nonstationary).

Adding covariates, the induced model at locations s(n) = (s1, . . . , sn),

f
(
Y | G (n), β, τ 2

)
=

∫
Nn

(
Y | X ′β + θ, τ 2In

)
dG (n) (θ) ,

where Y = (Y (s1), . . . ,Y (sn))′, θ = (θ(s1), . . . , θ(sn))′, and X is
a p × n matrix with Xij the value of the i-th covariate at the j-th
location.
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Spatial Dirichlet process models

Data: for t = 1, . . . ,T , response Yt = (Yt(s1), . . . ,Yt(sn))′ (with
latent vector θt = (θt(s1), . . . , θt(sn))′), and design matrix Xt .

G
(n)
0 (· | σ2, φ) = Nn(0n, σ

2Hn(φ)) where (Hn(φ))i,j = ρφ(si − sj) (or
ρφ(||si−sj ||)), induced by a mean 0 stationary (or isotropic) Gaussian
process. (Exponential covariance function ρφ(|| · ||) = exp(−φ|| · ||),
φ > 0, used for the data example.)

Bayesian model: (conjugate DP mixture model)

Yt | θt , β, τ 2 ind.∼ Nn(Yt | X ′t β + θt , τ
2In), t = 1, . . . ,T ,

θt | G (n) i.i.d.∼ G (n), t = 1, . . . ,T ,

G (n) | α, σ2, φ ∼DP(α,G
(n)
0 ); G

(n)
0 = Nn(· | 0n, σ

2Hn(φ)),

with hyperpriors for β, τ 2, α,σ2, and φ.

Posterior inference using standard MCMC techniques for DP mixtures
— extensions to accommodate missing data — methods for prediction
at new spatial locations.
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Data example

Precipitation data from the Languedoc-Rousillon region in southern
France.

Data were discussed, for example, in Damian, Sampson and Guttorp
(2001).

Original version of the dataset includes 108 altitude-adjusted 10-day
aggregated precipitation records for the 39 sites in Figure 3.1.

We work with a subset of the data based on the 39 sites but only
75 replicates (to avoid records with too many 0-s), which have been
log-transformed with site specific means removed.

Preliminary exploration of the data suggests that spatial association
is higher in the northeast than in the southwest.

In the interest of validation for spatial prediction, we removed two
sites from each of the three subregions in Figure 3.1, specifically, sites
s4, s35, s29, s30, s13, s37, and refitted the model using only the data
from the remaining 33 sites.
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Data example

6000 6500 7000 7500 8000

17
00

0
17

50
0

18
00

0
18

50
0

19
00

0
19

50
0

  

 

 

 

 

 

 
 

 
 

 
  

 

 

 
 

  
 

 

 

 
 

 

  
 

 
 

 

 
 

 

  

 

 

6000 6500 7000 7500 8000

17
00

0
17

50
0

18
00

0
18

50
0

19
00

0
19

50
0

1 2

3

4

5

6

7

8
9

10
11

12
1314

15

16

17
18

19 20
21

22

23

24
25

26

27 28
29

30
31

32

33
34

35

3637

38

39

6000 6500 7000 7500 8000

17
00

0
17

50
0

18
00

0
18

50
0

19
00

0
19

50
0

6000 6500 7000 7500 8000

17
00

0
17

50
0

18
00

0
18

50
0

19
00

0
19

50
0

6000 6500 7000 7500 8000

17
00

0
17

50
0

18
00

0
18

50
0

19
00

0
19

50
0

6000 6500 7000 7500 8000

17
00

0
17

50
0

18
00

0
18

50
0

19
00

0
19

50
0

6000 6500 7000 7500 8000

17
00

0
17

50
0

18
00

0
18

50
0

19
00

0
19

50
0

6000 6500 7000 7500 8000

17
00

0
17

50
0

18
00

0
18

50
0

19
00

0
19

50
0

Figure 3.1: Geographic map of the Languedoc-Roussillon region in southern France.
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Data example
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Figure 3.2: French precipitation data. Image plots based on functionals of posterior

predictive distributions at observed sites and a number of new sites (darker colors

correspond to smaller values).
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Data example
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Figure 3.3: French precipitation data. Bivariate posterior predictive densities for pairs

of sites (s4, s35), (s29, s30), (s13, s37) and (s4, s13) based on model fitted to data after

removing sites s4, s35, s29, s30, s13 and s37 (overlaid on data observed at the

corresponding pairs of sites in the full dataset).
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DDP modeling for developmental toxicity studies

Birth defects induced by toxic chemicals are investigated through
developmental toxicity studies.

A number of pregnant laboratory animals (dams) are exposed to a
toxin. Recorded from each animal are:

the number of resorptions and/or prenatal deaths;

the number of live pups, and the number of live malformed pups;

data may also include continuous outcomes from the live pups
(typically, body weight).

Key objective is to examine the relationship between the level of ex-
posure to the toxin (dose level) and the probability of response for the
different endpoints: embryolethality; malformation; low birth weight.
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Developmental toxicology data

Focus on clustered categorical responses.

Data structure for Segment II designs (exposure after implantation).

Data at dose (toxin) levels, xi , i = 1, ...,N, including a control group
(dose = 0).

ni dams at dose level xi .

For the j-th dam at dose xi :

mij : number of implants.

Rij : number of resorptions and prenatal deaths (Rij ≤ mij ).

y∗ij = {y∗ijk : k = 1, ...,mij − Rij}: binary malformation indicators for

the live pups.

yij =
∑mij−Rij

k=1 y∗ijk : number of live pups with a malformation.
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Developmental toxicology data

To begin with, consider simplest data form, {(mij , zij ) : i = 1, . . . ,N, j = 1, . . . , ni},
where zij = Rij + yij is the number of combined negative outcomes
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Figure 3.4: 2,4,5-T data (left) and DEHP data (right). Each circle is for a particular dam, the size of the circle is proportional to the

number of implants, and the coordinates of the circle are the toxin level and the proportion of combined negative outcomes.
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Objectives of DDP modeling

Develop nonparametric Bayesian methodology for risk assessment in
developmental toxicology.

Overcome limitations of parametric approaches, while retaining a fully
inferential probabilistic model setting.

Modeling framework that provides flexibility in both the response
distribution and the dose-response relationship.

Build flexible risk assessment inference tools from nonparametric
modeling for dose-dependent response distributions.

Nonparametric mixture models with increasing levels of complexity in
the kernel structure to account for the different data types.

DDP priors for the dose-dependent mixing distributions.

Emphasis on properties of the implied dose-response relationships.
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DDP mixture model formulation

Begin with a DDP mixture model for the simplest data structure,
{(mij , zij) : i = 1, . . . ,N, j = 1, . . . , ni}, where zij is the number
of combined negative outcomes on resorptions/prenatal deaths and
malformations.

Number of implants is a random variable, though with no information
about the dose-response relationship (the toxin is administered after
implantation).

f (m) = Poisson(m | λ), m ≥ 1 (more general models can be used).

Focus on dose-dependent conditional response distributions f (z | m):

for dose level x , model f (z | m) ≡ f (z | m,Gx) through a nonpara-
metric mixture of Binomial distributions;

common-weights DDP prior for the collection of mixing distributions
{Gx : x ∈ X ⊆ R+}.
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DDP mixture model formulation

DDP mixture of Binomial distributions:

f (z | m,GX ) =

∫
Bin

(
z | m, exp(θ)

1 + exp(θ)

)
dGX (θ), GX ∼ DDP(α,G0X )

Gaussian process (GP) for G0X with:

linear mean function, E(θ`(x) | β0, β1) = β0 + β1x ;

constant variance, Var(θ`(x) | σ2) = σ2;

isotropic power exponential correlation function,
Corr(θ`(x), θ`(x

′) | φ) = exp(−φ|x − x ′|d) (with fixed d ∈ [1, 2]).

Hyperpriors for α and ψ = (β0, β1, σ
2, φ).

MCMC posterior simulation using blocked Gibbs sampling.

Posterior predictive inference over observed and new dose levels, using
the posterior samples from the model and GP interpolation for the
DDP locations.
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DDP mixture model formulation

Key aspects of the DDP mixture model:

Flexible inference at each observed dose level through a nonparametric
Binomial mixture (overdispersion, skewness, multimodality).

Prediction at unobserved dose levels (within and outside the range of
observed doses).

Level of dependence between Gx and Gx′ , and thus between f (z |
m,Gx) and f (z | m,Gx′), is driven by the distance between x and x ′.

In prediction for f (z | m,Gx), we learn more from dose levels x ′ nearby
x than from more distant dose levels.

Inference for the dose-response relationship is induced by flexible
modeling for the underlying response distributions.

Linear mean function for the DDP centering GP enables connections
with parametric models, and is key for flexible inference about the
dose-response relationship.
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Dose-response curve

Exploit connection of the DDP Binomial mixture for the negative
outcomes within a dam and a DDP mixture model with a product
of Bernoullis kernel for the set of binary responses for all implants
corresponding to that dam.

Using the equivalent mixture model formulation for the underlying
binary outcomes, define the dose-response curve as the probability of
a negative outcome for a generic implant expressed as a function of
dose level:

D(x) =

∫
exp(θ)

1 + exp(θ)
dGx(θ) =

∞∑
`=1

ω`
exp(θ`(x))

1 + exp(θ`(x))
, x ∈ X

If β1 > 0, the prior expectation E(D(x)) is non-decreasing with x ,
but prior (and thus posterior) realizations for the dose-response curve
are not structurally restricted to be non-decreasing (a model asset!).
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Data examples: 2,4,5-T data
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Figure 3.5: 2,4,5-T data. Data set from a developmental toxicity study regarding the

effects of the herbicide 2,4,5-trichlorophenoxiacetic (2,4,5-T) acid.
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Data examples: 2,4,5-T data
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Figure 3.6: 2,4,5-T data. For the 6 observed and 2 new doses, posterior mean

estimates (denoted by “o”) and 90% uncertainty bands (red) for f (z | m = 12,Gx ).
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Data examples: 2,4,5-T data
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Figure 3.7: 2,4,5-T data. Posterior mean estimate and 90% uncertainty bands for the

dose-response curve under a Binomial-logistic model (left), a Beta-Binomial model

(middle), and the DDP Binomial mixture model (right).
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Data examples: DEHP data
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Figure 3.8: DEHP data. Left panel: data from an experiment that explored the effects

of diethylhexalphthalate (DEHP), a commonly used plasticizing agent. Right panel:

Posterior mean estimate and 90% uncertainty bands for the dose-response curve; the

dip at small toxin levels may indicate a hormetic dose-response relationship.
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Modeling for multicategory classification responses

Full version of the DEHP data
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Figure 3.9: Clustered categorical responses: for the j-th dam at dose xi , Rij

resorptions and prenatal deaths, Rij ≤ mij (left panel), and yij malformations among

the live pups, yij ≤ mij − Rij (middle panel). The right panel plots the combined

negative outcomes, Rij + yij ≤ mij , as in Figure 3.8.
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Modeling for multicategory classification responses

DDP mixture model for endpoints of embryolethality (R) and
malformation for live pups (y):

f (R, y | m,GX ) =

∫
Bin (R | m, π(γ)) Bin (y | m − R, π(θ)) dGX (γ, θ)

π(v) = exp(v)/{1 + exp(v)}, v ∈ R, denotes the logistic function;

GX =
∑∞
`=1 ω`δη`X ∼ DDP(α,G0X ), where η`(x) = (γ`(x), θ`(x));

G0X defined through two independent GPs with linear mean functions,
E(γ`(x) | ξ0, ξ1) = ξ0 + ξ1x , and E(θ`(x) | β0, β1) = β0 + β1x .

Equivalent mixture model (with product Bernoulli kernels) for binary
responses: R∗ non-viable fetus indicator; y∗ malformation indicator.
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Dose-response curves

Probability of embryolethality:

Pr(R∗ = 1 | Gx) =

∫
π(γ) dGx(γ, θ), x ∈ X

(monotonic in prior expectation provided ξ1 > 0).

Probability of malformation:

Pr(y∗ = 1 | R∗ = 0,Gx) =

∫
{1− π(γ)}π(θ) dGx(γ, θ)∫
{1− π(γ)} dGx(γ, θ)

, x ∈ X

Combined risk function:

Pr(R∗ = 1 or y∗ = 1 | Gx) = 1−
∫
{1−π(γ)}{1−π(θ)} dGx(γ, θ), x ∈ X

(monotonic in prior expectation provided ξ1 > 0 and β1 > 0).
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DEHP data (full version)

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

probability of non-viable fetus

dose mg/kg x 1000

Pr
(R
*=
1;
Gx
)

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

probability of malformation

dose mg/kg x 1000

Pr
(Y
*=
1|R

*=
0;
Gx
)

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

combined risk

dose mg/kg x 1000

r(x
;G
x)

Figure 3.10: DEHP data. Posterior mean estimates and 90% uncertainty bands for the

three dose-response curves. The model identifies the malformation endpoint as the

sole contributor to the hormetic shape of the combined risk function.
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