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Motivating Dirichlet process mixtures

@ Recall that the Dirichlet process (DP) is a conjugate prior for random
distributions under i.i.d. sampling.

o However, posterior draws under a DP model correspond (almost surely)
to discrete distributions. This is somewhat unsatisfactory if we are
modeling continuous data ...

@ In the spirit of kernel density estimation, one solution is to use
convolutions to smooth out posterior estimates.

@ In a model-based context, this leads to DP mixture models, i.e., a
mixture model where the mixing distribution is unknown and assigned
a DP prior (recall that this is different from a mixture of DPs, in which
the parameters of the DP are random).

@ Strong connection with finite mixture models.

@ More generally, we might be interested in using a DP as part of a
hierarchical Bayesian model to place a prior on the unknown distri-
bution of some of its parameters (e.g., random effects models). This
leads to semiparametric Bayesian models.
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Mixture distributions

@ Mixture models arise naturally as flexible alternatives to standard
parametric families.

e Continuous mixture models (e.g., t, Beta-binomial, and Poisson-gamma
models) typically achieve increased heterogeneity but are still limited
to unimodality and usually symmetry.

e Finite mixture distributions provide more flexible modeling, and are
now relatively easy to implement, using simulation-based model fitting
(e.g., Richardson and Green, 1997; Stephens, 2000; Jasra, Holmes and
Stephens, 2005).

@ Rather than handling the very large number of parameters of finite
mixture models with a large number of mixture components, it may be
easier to work with an infinite dimensional specification by assuming
a random mixing distribution, which is not restricted to a specified
parametric family.
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Finite mixture models

@ Recall the structure of a finite mixture model with K components, for
example, a mixture of K = 2 Gaussian densities:

ind.
Vil w,ps iz, 08,03 = wN(y; | pa, 0f) + (1= w)N(y; | p2, 03),
that is, observation y; arises from a N(u;,0%) distribution with prob-

ability w or from a N(u2,03) distribution with probability 1 — w
(independently for each i = 1,..., n, given the parameters).

@ In the Bayesian setting, we also set priors for the unknown parameters

(Wa M1, K2, 0-%70-3) ~ P(W7 M1, K2, O%a U%)

Athanasios Kottas AMS 241, Fall 2015 — Notes 2



Introduction DP mixture models Posterior simulation methods Applications

Finite mixture models

@ The model can be rewritten in a few different ways. For example, we
can introduce auxiliary random variables Lj,...,L, such that L; =1
if y; arises from the N(u1,0%) component (component 1) and L; = 2
if y; is drawn from the N(u2,03) component (component 2). Then,
the model can be written as

ind.
Yi | LI7M17M270%>O—§ ~ N(yl ‘ MLHUE;)
P(L; =1lw) =w =1—-P(L; = 2|w)

(Wa M1, 12, O'%,U%) ~ P(W7 M1, 12, Uf’ O'%)

o If we marginalize over L;, for i = 1,...,n, we recover the original
mixture formulation.

@ The inclusion of indicator variables is very common in finite mixture
models, and it is also used extensively for DP mixtures.
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Finite mixture models

@ We can also write
wN(yi | p1,0%) + (1 = w)N(yi | g, 03) = /N(y/ | p,0°)dG(p,0%),
where

G(:) = Wh(uy,o2)() + (1 = W)d(u,.02)():

@ A similar expression can be used for a general K mixture model.

o Note that G is discrete (and random) — a natural alternative is to
use a DP prior for G, resulting in a Dirichlet process mixture (DPM)
model, or more general nonparametric priors for discrete distributions.

e Working with a countable mixture (rather than a finite one) provides
theoretical advantages (full support) as well as practical benefits: the
number of mixture components is estimated from the data based on a
model that supports a countable number of components in the prior.
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Definition of the Dirichlet process mixture model

@ The Dirichlet process mixture model
F(-| G) :/K(- 16)dG(9), G ~ DP(a, Go).

where K(- | 8) is a parametric distribution function indexed by 6.

@ The Dirichlet process has been the most widely used prior for the
random mixing distribution G, following the early work by Antoniak
(1974), Lo (1984) and Ferguson (1983).

e Corresponding mixture density (or probability mass) function,

16)= [ K-16)d6(0).

where k(- | 8) is the density (or probability mass) function of K(- | 6).

@ Because G is random, the c.d.f. F(- | G) and the density function
f(-| G) are random (Bayesian nonparametric mixture models).
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g

Figure 2.1: Two realizations from a DP(a = 2, Gy = N(0, 1)) (left column) and the associated cumulative distribution function (center

column) and density function (right column) for a location DP mixture of Gaussian kernels with standard deviation 0.6.
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An equivalent formulation

@ In the context of DP mixtures, the (almost sure) discreteness of real-
izations G from the DP(«, Gg) prior is an asset — it allows ties in the
mixing parameters, and thus makes DP mixture models appealing for
many applications, including density estimation and regression.

@ Using the constructive definition of the DP, G = ZZ1 wedy,, the
prior probability model 7(- | G) admits an (almost sure) representation
as a countable mixture of parametric densities,

F(-1G) =" wek(- | )
=1

o Weights: w1 = z1, we = 2z Hf;ll(l —2z), £ > 2, with z i.id.
Beta(1, ).

o Locations: ¥ i.i.d. Go (and the sequences {z, : r = 1,2,...} and
{9¢:€=1,2,...} are independent).
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Support of Dirichlet process mixture models

@ Contrary to DP prior models, DP mixtures can model
o discrete distributions (e.g., K(- | #) might be Poisson or binomial)

e and continuous distributions, either univariate (K(- | 6) can be, e.g.,
normal, gamma, or uniform) or multivariate (with K(- | 6), say, mul-
tivariate normal).

@ Much more than just density estimation:

e Non-Gaussian and non-linear regression through DP mixture modeling
for the joint response-covariate distribution.

o Flexible models for ordinal categorical responses.
e Modeling of point process intensities through density estimation.

o Time-series and/or spatial modeling, using dependent DP priors for
temporally and/or spatially dependent mixing distributions.
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Support of Dirichlet process mixture models

@ Several approximation or representation results for mixtures.
o (Discrete) normal location-scale mixtures, Zjﬂil wiN(- | wj,07), can
approximate arbitrarily well (as M — o) any density on the real line
(Ferguson, 1983; Lo, 1984).

o The c.d.f. of the Erlang mixture, Z;:I wjgamma(t | j, ), converges

pointwise to any continuous c.d.f. H(t) on R, as J — oo and the

common scale parameter ¢ — 0 (set w; = H(j0) — H((j — 1)0)).

e As K — oo, the Bernstein density, Zszl wiBeta(u | j,K —j + 1),

converges uniformly to any continuous density h(u) (with c.d.f. H)
on (0,1) (set w; = H(j/K) — H((j — 1)/K)).

e For any non-increasing density f(t) on the positive real line there
exists a distribution function G such that f can be represented as a
scale mixture of uniform densities, i.e., f(t) = [0 '1j4)(t)dG(0) —
the result yields flexible DP mixture models for symmetric unimodal
densities (Brunner and Lo, 1989; Brunner, 1995) as well as general
unimodal densities (Brunner, 1992; Lavine and Mockus, 1995; Kottas
and Gelfand, 2001; Kottas and Krnjaji¢, 2009).
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Support of Dirichlet process mixture models

@ Results on Kullback-Leibler support for various types of DP mixture
models (e.g., Wu and Ghosal, 2008).

o Consider the space of densities defined on sample space X.

e For any density fy in that space, the Kullback-Leibler neighborhood
of size € > 0 is given by

K.(fy) = {f : /fo(x) log (';’g;) dx < e}

@ A nonparametric prior model for densities satisfies the Kullback-Leibler
property if it assignes positive probability to K.(fy) for any density fy
in the space of interest, and for any € > 0 (e.g., Walker, Damien and
Lenk, 2004).
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Semiparametric Dirichlet process mixture models

@ Typically, semiparametric DP mixtures are employed

i.i.d.

51 6.0 £(.16.6) = [ K(16.0)d6(6), i=1....m
GNDP(Q,G()),

with a parametric prior p(¢) placed on ¢ (and, perhaps, hyperpriors
for ac and/or the parameters 1) of Gy = Go(- | ©)).

o Hierarchical formulation for DP mixture models: introduce latent
mixing parameter 6; associated with y;,

ind.

yi | 0i,0 ~ k(yi | 0i,0), i=1,....n,
616"~ g, i=1,....n,

G| o, ¢ ~ DP(a, Go(- | ¥)),
¢, a,9 ~ p(¢)p(a)p(v)
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Connection with finite mixture models

@ The countable sum formulation of the DP mixture model has
motivated the study of several variants and extensions.

@ It also provides a link between limits of finite mixtures, with prior
for the weights given by a symmetric Dirichlet distribution, and DP
mixture models (e.g., Ishwaran and Zarepour, 2000).

@ Consider the finite mixture model with K components:

K
Z qtk(y | 1915)7
t=1

with (g1, .., qk) ~ Dir(a/K, ...,a/K)and 9, & Gy, t =1,...,K.

@ When K — oo, this model corresponds to a DP mixture with kernel
k and a DP(«, Gg) prior for the mixing distribution.

o As K — o0, 3K | .6, converges weakly to 352, wedy, ~ DP(a, Go).
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Prior specification

e Taking expectation over G with respect to its DP prior DP(«, Gp),
we obtain:

E{F(-1G,0)} = F(-| Go,0), E{f(-]G,9)} =f(-| Go, ).

@ These expressions facilitate prior specification for the parameters v of

Go(- | ).

@ On the other hand, recall that for the DP(«, Gp), a controls how close
a realization G is to G, but also the extent of discreteness of G.

@ In the DP mixture model, « controls the prior distribution of the
number of distinct elements n* of the vector 8 = (64,...,6,), and
hence the number of distinct components of the mixture that appear
in a sample of size n (Antoniak, 1974; Escobar and West, 1995; Liu,
1996).
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Prior specification

@ In particular,

M) m=1,...

P Y= = Cn la™ ) ) )
r(n* =m| a) = c(m)nla (ot n)

where the factors ¢,(m) = Pr(n* = m | @ = 1) can be computed
using certain recurrence formulas (Stirling numbers) (Escobar and
West, 1995).

o If o is assigned a prior p(v), Pr(n* = m) = [ Pr(n* = m| a)p(a)da.

@ Moreover, for moderately large n,

which can be further averaged over the prior for « to obtain a prior
estimate for E(n™*).
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Prior specification

@ Two limiting special cases of the DP mixture model.

o One distinct component, when o — 0™

yi 16,6 k(yi | 6,0), i=1,...,n

0]y~ Go(-| )
@, ~ p(@)p(v)

e n components (one associated with each observation), when oo — oo

ind. .
y,'|9,‘,¢Nk(y;|9,',¢), /:1,...,n

0i | " Gol- | ), i=1,...,n

¢, ~ p(d)p(v))
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Methods for posterior inference

e Data = {y;,i = 1,...,n} ii.d., conditionally on G and ¢, from
f(-] G,®). (If the model includes a regression component, the data
also include the covariate vectors x;, and, in such cases, ¢, typically,
includes the vector of regression coefficients).

o Interest in inference for the latent mixing parameters 8 = (64, ..., 6,),
for ¢ (and the hyperparameters «, ¥), for f(yo | G, ¢), and, in general,
for functionals H(F(- | G,¢)) of the random mixture F(- | G,¢)
(e.g., c.d.f. function, hazard function, mean and variance functionals,
percentile functionals).

@ Full and exact inference, given the data, for all these random quan-
tities is based on the joint posterior distribution of the DP mixture
model

p(G, 6,0, a,¢ | data)
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Marginal posterior simulation methods

@ Key result: representation of the joint posterior distribution

p(G7¢797a71/) | data) = p(G | 9,0471/’)P(9>¢70471/) | data)

e p(0,d,a, | data) is the marginal posterior for the finite-dimensional
portion of the full parameter vector (G, ¢, 0, a, ).

e G|0,a,v ~DP(a, Co), where & = o + n, and

GO(') =

a 1 "
P nGo(' | ) + m;éei(.)'

(Hence, the c.d f., Go(t) = 72 Go(t | ¥) + 72 371 1j,.00) (1))
@ Sampling from the DP(&, @0) is possible using one of its definitions —
thus, we can obtain full posterior inference under DP mixture models

if we sample from the marginal posterior p(0, ¢, o, 9 | data).
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Marginal posterior simulation methods

@ The marginal posterior p(8, ¢, «, 9 | data) corresponds to the marginal-
ized version of the DP mixture model, obtained after integrating G
over its DP prior (Blackwell and MacQueen, 1973),

ind. .
il 0i,0 ~ k(yi | 0i,9), i=1,...,n

0 = (015"-301’1) | 04,77& ~ p(a | 0‘71/’)7
¢, 0, ¢ ~ p(@)p()p(¥).
@ The induced prior distribution p(80 | «, 1)) for the mixing parameters

0; can be developed by exploiting the Pdlya urn characterization of
the DP,

i=2

n i—1
p(6 | o, ¢) = Go(61 | w)H{aﬁ_ L Gol0; | ¥) + a+1,._ : Zae,(e,-)}-
Jj=1

@ For increasing sample sizes, the joint prior p(0 | v, ©) gets increasingly
complex to work with.
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Marginal posterior simulation methods

e The marginal prior p(@ | o, 1) can be written in an equivalent form
which makes explicit the partitioning (clustering) induced by the
discreteness of the DP prior (Antoniak, 1974; Lo, 1984).

@ As is essentially always the case for DP mixtures, assume that Gy is
continuous (so that ties can only arise by setting 6; equal to 6}, j < i).

@ Denote by w = {s; : j = 1,...,n*} a generic partition of {1,...,n},
where: n* is the number of cells of the partition; n; is the number of
elements in cell 5;; €1 < ... < g, are the elements of cell s;.

o Letting P denote the set of all partitions of {1, ..., n},

p(0 o, 9) = p(r | @) [ Golte, [ 9)T], 00, (6e,.)

TeP j=1

where p(7 | @) is the DP induced prior probability for partition r,

p(7r|0¢):<H;: (a—i—m—l) an H
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Marginal posterior simulation methods

@ Therefore, the marginal posterior

n

p(6, ¢, a7 | data) o p(6 | o, ¥)p(¢)p(e)p() [ k(yi | 07, ¢)

i=1

is difficult to work with — even point estimates practically impossible
to compute for moderate to large sample sizes.

o Early work for posterior inference:

e Some results for certain problems in density estimation, i.e., expres-
sions for Bayes point estimates of f(yo | G) (e.g., Lo, 1984; Brunner
and Lo, 1989).

o Approximations for special cases, e.g., for binomial DP mixtures (Berry
and Christensen, 1979).

e Monte Carlo integration algorithms to obtain point estimates for the
0; (Ferguson, 1983; Kuo, 1986a,b).
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Simulation-based model fitting

o Note that, although the joint prior p(0 | «,1) has an awkward ex-
pression for samples of realistic size n, the prior full conditionals have
convenient expressions:

plO; [ 16;:) # 1} 8) = —— = Go(6; | ¥) + Zée ©00)-

o Key idea (Escobar, 1988; 1994): setup a Markov chain to explore
the posterior p(0, ¢, «, 1 | data) by simulating only from posterior
full conditional distributions, which arise by combining the likelihood
terms with the corresponding prior full conditionals (in fact, Escobar's
algorithm is essentially a Gibbs sampler developed for a specific class
of models!).

@ Several other Markov chain Monte Carlo (MCMC) methods that im-
prove on the original algorithm (e.g., West et al., 1994; Escobar and
West, 1995: Bush and MacEachern, 1996; Neal, 2000; Jain and Neal,
2004).
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Simulation-based model fitting

@ A key property for the implementation of the Gibbs sampler is the
discreteness of G, which induces a clustering of the 6;.

e n™: number of distinct elements (clusters) in the vector (01,...,0,).

o 07, j=1,...,n": the distinct 0;.

o w=(w,...,w,): vector of configuration indicators, defined by w; = j
if and only if 6; =67, i =1,...,n.

o nj: size of j-th cluster, i.e., nj=|{i:w;=j}|,j=1,...,n".

o (n*,w,(07,...,0%)) is equivalent to (61,...,6,).

e Standard Gibbs sampler to draw from p(6, ¢, a, v | data) (Escobar
and West, 1995) is based on the following full conditionals:

Q p(0i | {0/ :i"#i},a,7,¢,data), fori=1,... n.
Q p(o|{0i:i=1,...,n}, data).

Q p(v | {Qj‘ D= 1,...,n*},n*,data).

Q p(a| n*,data).

(The expressions include conditioning only on the relevant variables, exploiting the

conditional independence structure of the model and properties of the DP).
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Simulation-based model fitting

Q Foreachi=1,....n p(6; | {0i:7 #i},a,1,¢,data) is simply a
mixture of n*~ point masses and the posterior for 6; based on y;,

n; qj

aq

T = — (9 |1/) ¢7YI)+ #69,**(9")'
aqo+Z 1" qj Z1045704'231:1 niq

° qj - k(.y’ | 9 77¢)

o o= [ k(yi | 0,0)g0(0 | ¥)do

° (0 |, ¢, yi) o< k(yi | 0i, ¢)go(0i | ¥)

e go is the density of Go

o The superscript “—" denotes all relevant quantities when 6; is removed
from the vector (01,...,0,), e.g., n*~ is the number of clusters in

{0,‘/ g 75 I}

e Updating 0; implicitly updates w;, i = 1,...,n; before updating 0;;1,
we redefine n*, 07 for j =1,...,n", w; for i =1,...,n, and n;, for
j=1,...,n
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Simulation-based model fitting

@ The posterior full conditional for ¢ does not involve the nonparametric
part of the DP mixture model,

p(¢|{6i:i=1,...,n}, data) < p(é Hk vi | 0i, ).

© Regarding the parameters ¥ of Gy,

p(v | {6;,j=1,...,n"},n*, data) o p(¢ Hgo 07 | ¥),

leading, typically, to standard updates.
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Simulation-based model fitting

@ Although the posterior full conditional for « is not of a standard form,
an augmentation method facilitates sampling if & has a gamma prior
(say, with mean a,/b,) (Escobar and West, 1995),

< T(a)
Ia+ n)
x p(a)a” ~}(a + n)Beta(a + 1, n)

xple)a” ot n) [ o)

p(a | n*,data) o p(a)a”

o Introduce an auxiliary variable 17 such that
p(a,n | n*,data) o p(a)a” o+ n)n*(1 — )"}

o Extend the Gibbs sampler to draw 7 | a, data ~ Beta(a + 1, n), and
a | n,n*,data from the two-component gamma mixture:

egamma(an +n", b —log(n))+(1—e€)gamma(an+n" —1, by —log(n))
where € = (aq + n* — 1)/ {n(ba — log(n)) + aa + n* — 1}.
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Improved marginal Gibbs sampler

o (West et al., 1994; Bush and MacEachern, 1996): adds one more
step where the cluster locations 9}‘ are resampled at each iteration to
improve the mixing of the chain.

@ At each iteration, once step (1) is completed, we obtain a specific
number of clusters n* and configuration w = (wy, ..., w,).

@ After the marginalization over G, the prior for the 6%, given the par-
tition (n*,w), is given by HJ"ZI g(07 | ¥), i.e., given n* and w, the
91’-k are i.i.d. from Gq.

@ Hence, for each j = 1,...,n*, the posterior full conditional

p(0; | w,n*,1, ¢, data) oc go(6] | v) [[ K(vil6;
{irwi=j}
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More general marginal MCMC algorithms

@ The Gibbs sampler can be difficult or inefficient to implement if:
o The integral [ k(y | 0,¢)go(0 | ¥)df is not available in closed form
(and numerical integration is not feasible or reliable).

e Random generation from h(0 | ¥, ¢,y) « k(y | 0,$)go(6 | ¥) is not
readily available.

@ For such cases, alternative MCMC algorithms have been proposed in
the literature (e.g., MacEachern and Miiller, 1998; Neal, 2000; Dahl,
2005; Jain and Neal, 2007).

o Extensions for data structures that include missing or censored ob-
servations are also possible (Kuo and Smith, 1992; Kuo and Mallick,
1997; Kottas, 2006).
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Posterior predictive distributions

@ Implementing one of the available MCMC algorithms for DP mixture
models, we obtain B posterior samples

{Ob:(aib D= 1a-~-7”)704b71/’ba¢b}7 b:17"'7Ba
from p(0, ¢, a, v | data).

@ Or, equivalently, posterior samples
{nZ,Wb,GZ: (ej*b ./: 17"'7”2)7ab7¢b7¢b}7 b= 17"’787

from p(n*,w,0" = (07 :j=1,...,n"),¢,,7 | data).

o Bayesian density estimate is based on the posterior predictive density
p(yo | data) corresponding to a new yg (with associated 6).
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Posterior predictive distributions

@ Using, again, the Pdlya urn structure for the DP,

p(@o | ”*7W79*’04a¢)

e 1 &
=2 -&0(0o | ¥) + g Jz:; n;do+ (o).

@ The posterior predictive density is given by

pln | data) = [ [ Ko | 00,0)p(00 | n*,w,0° )
p(n*,w, 0%, a,, ¢ | data)dfpdwdO*dadidg

@ Hence, a sample {yp : b =1,...,B} from the posterior predictive
distribution can be obtained using the MCMC output, where, for each
b=1,...,B:

o we first draw 6o from p(6o | nj, ws, 0}, s, 1)
e and then, draw yo , from K(- | 60,5, db).
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Posterior predictive distributions

@ To further highlight the mixture structure, note that we can also write

p(yo | data) =

1 & ]
/{ain /k(yo | 0,0)g0(6 | )d6 + m;njk(}/o | 0; 7¢)}

p(n",w, 0" a1, ¢ | data)dwdB*dadyde

@ The integrand above is a mixture with n* +1 components, where the
last n* components (that dominate when « is small relative to n) yield
a discrete mixture (in 0) of k(- | 6, ¢) with the mixture parameters
defined by the distinct 6.

@ The posterior predictive density for yg is obtained by averaging this
mixture with respect to the posterior distribution of n*, w, 8" and all
other parameters.
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Inference for general functionals of the random mixture

o Note that p(yo | data) is the posterior point estimate for the density
f(yo | G,¢) (at point yp), i.e., p(yo | data) = E(f(yo | G, ¢) | data)
(the Bayesian density estimate under a DP mixture model can be
obtained without sampling from the posterior distribution of G).

@ Analogously, we can obtain posterior moments for linear functionals
H(F(- | G,¢)) = [H(K(- | 0,¢))dG(0) (Gelfand and Mukhopad-
hyay, 1995) — for linear functionals, the functional of the mixture is
the mixture of the functionals applied to the parametric kernel (e.g.,
density and c.d.f. functionals, mean functional).

@ How about more general inference for functionals?

o Interval estimates for F(yo | G, ¢) for specified yo, and, therefore,
(pointwise) uncertainty bands for F(- | G, ¢)?

o Inference for derived functions from F(- | G, ®), e.g., cumulative haz-
ard, —log(1 — F(- | G,®)), or hazard, f(- | G,9)/(1 — F(- | G,¢)),
functions?

o Inference for non-linear functionals, e.g., for percentiles?
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Inference for general functionals of the random mixture

@ Such inferences require the posterior distribution of G — recall,

P(G»¢»970¢7¢ | data) = p(G | ‘9,04»1/1)17(0»@0471/’ | data)

and

- 1 n
G | O,Q,wNDP (a+n, Go(): aj_nGo(|1/))+ O[—‘rnzil(gef(.))

@ Hence, given posterior samples (0p, ap, b, Pp), for b = 1,..., B,
from the marginalized version of the DP mixture, we can draw G
from p(G | Op, ap,1p) using:

o The original DP definition if we only need sample paths for the c.d.f.
of the mixture (and y is univariate) (e.g., Krnjaji¢ et al., 2008).

e More generally, the DP constructive definition with a truncation ap-
proximation (Gelfand and Kottas, 2002; Ishwaran and Zarepour, 2002).
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Inference for general functionals of the random mixture

@ Applying directly the DP constructive definition,

Go(+) = G160 (- +:Z_§{ II_ 1—Q)}%A-H{H:ll(l—Cr)}éuL(-)

where the (¢, £ =1,...,L—1, are i.id. Beta(1,a + n), and (indepen-
dently) the Up, £ =1,...,L, are i.i.d. Go.

-1

@ A more efficient truncation approximation through an alternative
representation for the conditional posterior of G (Pitman, 1996)

G| (mw,07),0,9 2 gn1G() + > g (*)

Jj=1

where G | a, 1 ~ DP(«, Gp) and, independently of G, (g1, -.-s Gn=, Gn+1) |
a,w ~ Dirichlet(ny, ..., np«, @).

@ Finally, the posterior samples G, yield posterior samples for
{H(F(-| Gp,¥p)) : b=1,..., B} from any functional H(F(- | G, ¢)).
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Density estimation data example

@ Asan example, we analyze the galaxy data set: velocities (km/second)
for 82 galaxies, drawn from six well-separated conic sections of the
Corona Borealis region.

@ The model is a location-scale DP mixture of Gaussian distributions,
with a conjugate normal-inverse gamma baseline distribution:

f(-1G) = /N(- | 4, 0%)dG(p,0?), G ~ DP(a, Gp),

where Go(u,02) = N(i1 | po, 0?/k)IGamma(o? | v, s).

@ We consider four different prior specifications to explore the effect of
increasing flexibility in the DP prior hyperparameters.

o Figure 2.2 shows posterior predictive density estimates obtained using
the function DPdensity in the R package DPpackage (the code was
taken from one of the examples in the help file).
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Density estimation data example: Code

*

*

#* 3

* 3

*

* 3

*

*

Data data(galaxy)

galaxy = data.frame(galaxy,speeds=galaxy$speed/1000)
attach(galaxy)

Initial state

state = NULL

MCMC parameters

nburn = 1000

nsave 10000

nskip = 10

ndisplay = 100

memc = list(nburn=nburn,nsave=nsave,nskip=nskip,ndisplay=ndisplay)
Example of Prior information 1

Fixing alpha, ml, and Psii

priorl = list(alpha=1,ml=rep(0,1),psiinvi=diag(0.5,1),nul=4,taul=1,tau2=100)
Example of Prior information 2

Fixing alpha and ml

prior2 = list(alpha=1,mi=rep(0,1),psiinv2=solve(diag(0.5,1)),nul=4,nu2=4,taul=1,tau2=100)

Example of Prior information 3
Fixing only alpha

prior3 = list(alpha=1,m2=rep(0,1),s2=diag(100000,1),psiinv2=solve(diag(0.5,1)),nul=4,nu2=4,taul=1,tau2=100)

Example of Prior information 4
Everything is random

Applications

priord = list(a0=2,b0=1,m2=rep(0,1),52=diag(100000,1) ,psiinv2=solve(diag(0.5,1)) ,nui=4,nu2=4,taul=1, tau2=100)

Fit the models

fit1.1 = DPdensity(y=speeds,prior=priorl,mcmc=mcmc,state=state,status=TRUE)
£it1.2 = DPdensity(y=speeds,prior=prior2,mcmc=mcmc,state=state,status=TRUE)
£it1.3 = DPdensity(y=speeds,prior=prior3,mcmc=mcmc,state=state,status=TRUE)
fit1.4 = DPdensity(y=speeds,prior=prior4,mcmc=mcmc,state=state,status=TRUE)
Plot the estimated density

plot(fit1.1,ask=FALSE)

plot(fit1.2,ask=FALSE)

plot(fit1.3,as! ALSE)

plot(fitl.4,ask=FALSE)
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Density estimation data example

Density o speeds Densiy of speeds
= B
7 3

w o 0 n = v s o= EI

Figure 2.2: Histograms of the raw data and posterior predictive densities under four prior choices for the galaxy data. In the top left panel
weset =1, ug = 0,5 =2, v = 4,k ~ Gam(0.5, 50); the top right panel uses the same settings except s ~ IGamma(4, 2); in the

bottom left panel we add hyperprior 11 ~ N(0, 100000); and in the bottom right panel we further add hyperprior o ~ Gam(2, 2).
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Conditional posterior simulation methods

@ The main characteristic of the marginal MCMC methods is that they
are based on the posterior distribution of the DP mixture model,
p(0, ¢, v | data), resulting after marginalizing the random mixing
distribution G (thus, referred to as marginal or collapsed methods).

@ Although posterior inference for G is possible under the collapsed
sampler, it is of interest to study alternative conditional posterior
simulation approaches that impute G as part of the MCMC algorithm,
and also improve on the mixing of marginal samplers.

o Methods based on finite truncation approximation of G, using its
stick-breaking representation — main example: Blocked Gibbs sampler
(Ishwaran and Zarepour, 2000; Ishwaran and James, 2001).

o Other approaches based on retrospective sampling techniques (Pa-
paspiliopoulos and Roberts, 2008), slice sampling methods (Walker,
2007; Kalli et al., 2011), as well as combinations of retrospective and
slice sampling (Yau et al., 2011).
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Blocked Gibbs sampler

@ Builds from truncation approximation to mixing distribution G given,
for finite N, by

N
Gn(-) =D pedz()-
/=1

o The Z;, £ =1,...,N, are i.i.d. Go.
o The weights arise through stick-breaking (with truncation)

-1 N—-1

p1= W1, PZZVZH(]-_Vr): £=2,....,N—1, PN:H(l—Vr):
r=1 r=1

where the Vi, £=1,...,N — 1, are i.i.d. Beta(1, «).

@ The joint prior for p = (p1,. .., pn), given «, corresponds to a special
case of the generalized Dirichlet distribution (Connor and Mosimann,
1969),

N—-2

fpla)=a""py H(1—p1) (L= (ptp2)) X x (1= )
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Blocked Gibbs sampler

@ The DP truncation level N can be chosen to any desired level of
accuracy.

@ A simple approach based on the prior expectation for the partial sum
of DP stick-breaking weights, E(X30, pr | @) = 1 — {a/(a + 1)}V
(can be averaged over the prior for v to estimate E(Z?’Zl pe)).

o For example, E(32°, pe | @ = 2) = 0.99996, and E(>}°, p¢) =
0.99997 under an exponential prior for a with mean 2.

@ A more general approach, which involves also the sample size n, is
available through Th. 2 in Ishwaran and James (2001): approximate
upper bound of 4nexp{—(N — 1)/a} on the L; distance between
the prior predictive probability of the sample under the countable
representation for G and its truncated version Gy.

o For example, with o = 2, the bound is 0.00001656 for n = 10® and
N = 35, and it is 0.00001678 for n = 10" and N = 58.
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Blocked Gibbs sampler

@ Replacing G with Gy = (p, Z), where Z = (Zy, ..., Zy), in the generic
DP mixture model hierarchical formulation, we have:

ind.

yi|9i7¢wk(yi‘0i7¢)7 I.:17...,I7,

ii.d.

0,-|p,Z ~ G/\/7 i:17...,n,

N
pZla~f(ple)[[e(Z | ¥),

=1

@, i, ~ p(@)p(a)p(eh).

o If we marginalize over the 6; in the first two stages of the hierarchical
model, we obtain a finite mixture model for the y;,

N

F(-1p.Z,0)=>_ pek(- | Ze, )

£=1

(conditionally on (p,Z) and ¢), which replaces the countable DP
mixture, f(-| G,¢) = [k(-|6,9)dG(8) = >0, wek(- | 9¢, ¢).
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Blocked Gibbs sampler

@ Now, having approximated the countable DP mixture with a finite
mixture, the mixing parameters 6; can be replaced with configuration
variables L = (L4, ..., L,) — each L; takes values in {1,..., N} such
that L;=/Cifonlyif ; = Zy, fori=1,...,n;£=1,... N.

@ Final version of the hierarchical model:

vilZ,Li,¢ ™ k(yi | Z1,, 9), i=1,....n,
Li [ p "~ pede(Li), i=1,...,n,

=1
Zo | "% Gol- | ), 0=1,...,N,

pla~f(p|a),
¢, ;1 ~ p(d)p(a)p().

e Marginalizing over the L;, w?vobtain the same finite mixture model
for the Yi: f( | p7z7¢) = ZZ:l pfk( ‘ Z€7¢)'
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Posterior full conditional distributions

Q To update Zy for £ =1,... N:

o Let n* be the number of distinct values {L} : j =1,...,n"} of vector
L.
o Then, the posterior full conditional for Z;,, ¢ = 1,..., N, can be

expressed in general as:

p(Ze|...,data) ccgo(Ze [ O) [T T[] k(ilZi:,9)

J=1 {iil=L7}

o Ife g {L;:j=1,...,n"}, Z is drawn from Go(- | ¥)
o Fort=1L;j=1,...,n%,

p(Zi | ... data) o go(Zir [¥) [ k(vilZis,9)
{i:L; L*
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@ The posterior full conditional for p is

N
p(p|....data) oc f(p | ) JT,  p2",

where M, = |[{i: L N
o Results in a generalized Dirichlet distribution, which can be sampled
through independent latent Beta variables.
o Vi " beta(l+ Me,a+ XN, M) for6=1,...,N—1.
e p = Vl, pe = ViTIL (1 — V) for £ =2,...,N —1; and py =

1305 pe
© Updating the L;, i=1,...,n
e Each L; is drawn from the discrete distribution on {1,..., N} with

probabilities pei o< pek(yi | Ze, @), for £=1,..., N.
o Note that the update for each L; does not depend on the other L;,
i" # i — this aspect of this Gibbs sampler, along with the block
updates for the Z;, are key advantages over Pdlya urn based marginal

MCMC methods .
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© The posterior full conditional for ¢ is

p(¢ | ... data) oc p(&) [ k(i | 63, ).

i=1

© The posterior full conditional for ¢ is

p(¢ | ..., data) Hgo 2

@ The posterior full conditional for « is proportional to p(oz)oz’vflplo\‘,,

which with a gamma(a,,b,) prior for «, results in a
gamma(N+a,—1, by —log(py)) distribution. (For numerical stability,

compute log(py) = log HN f(1- V) = Zf’:—ll log(1 — V;).)

Note that the posterior samples from p(Z,p,L, ¢, a, ¢ | data) yield
directly the posterior for Gy, and thus, full posterior inference for any
functional of the (approximate) DP mixture (- | Gy, @) = f(- | p, Z, ¢).
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Posterior predictive inference

@ Posterior predictive density for new yg, with corresponding configura-
tion variable Ly,

P(yo | data) = /k(yo | Ziy, ®) <Z széfz(LO)>
(=1

p(Z,p,L, b, | data)dLo dZ dL dp d¢ da dvp

= / (szk(}’f) | Ze,¢)>
=1

p(Z,p,L, ¢, o, | data)dZ dL dp d¢ da dop
=E(f(y | p, Z, ¢) | data).

@ Hence, p(yo | data) can be estimated over a grid in y, by drawing
samples {Lop : b=1,..., B} for Ly, based on the posterior samples
for p, and computing the Monte Carlo estimate

B
BT, k(o | Zig,, 0b),

where B is the posterior sample size.

Athanasios Kottas AMS 241, Fall 2015 — Notes 2



Introduction DP mixture models Posterior simulation methods Applications

Model checking/comparison for DP mixtures

@ Posterior predictive estimation/sampling is straightforward for DP
mixtures, and this allows using standard model checking/comparison
techniques for (hierarchical) Bayesian models. Two examples are
discussed next.

@ Posterior predictive loss criterion (Gelfand and Ghosh, 1998): choose
model that minimizes Dx(M) = P(M) + {k/(k + 1)} G(M), where:
o P(M) =", Var™(y,e,.; | data) is a penalty term, and
o G(M) =" {yi — E" (Ynew,i | data)}? is a goodness of fit term.

o EM(ypew,i | data) and Var’™(y,e,,; | data) is the posterior predictive
mean and posterior predictive variance under model M for replicated
response ynew,i; in regression problems, the posterior predictive distri-
bution for ynew,i is evaluated for the observed vector of covariates x;.

o k > 0 controls the weight assigned to the goodness of fit term.

Athanasios Kottas AMS 241, Fall 2015 — Notes 2



Introduction DP mixture models Posterior simulation methods Applications

Model checking/comparison for DP mixtures

o Conditional predictive ordinate (CPO) for observation y; under model
M: CPOEM) = pM\(y; | {y; : j # i}), that is, the value of the
posterior predictive density at y;, given the data set excluding y;.

e Ratio CPOﬁMl)/CPO,(-MZ) describes how well model M; supports obser-
vation y; relative to model M.

o “Pseudo Bayes factor”, By = H;’ZI(CPOEMl)/CPogMZ)), is an aggre-
gate summary of how well supported the data are by model M; relative
to model M, (Geisser and Eddy, 1979).

o “Log pseudo marginal likelihood” (LPML) for model M: LPMLy =
log [T, CPO™, such that Bi» = exp(LPMLy, — LPMLys,).

o The Bayes factor requires the non-trivial computation of the DP
mixture model marginal likelihood, m(y), where y = (y1, ..., ¥n).
o m(y) = [ L(y: ¢, &, ¥)p(¢)p()p(v) dpdady
o L(y;d,a,9) = f{HIn:l k(yi | 0:,9)}p(0 | , %)) dO
o One approach is given in Basu and Chib (2003), using sequential
importance sampling to estimate the likelihood ordinate L(y; ¢, a, ).
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Alternative computational inference schemes

@ Alternative (to MCMC) fitting techniques have been studied.

o Sequential importance sampling (Liu, 1996; Quintana, 1998;
MacEachern et al., 1999; Quintana and Newton, 2000; Carvalho et
al., 2010).

o Weighted Chinese restaurant algorithms (Ishwaran and Takahara, 2002;
Ishwaran and James 2003).

e Monte Carlo EM (Naskar and Das, 2004).

o Predictive recursion (Newton and Zhang, 1999; Tokdar et al., 2009).

o Variational algorithms (e.g., Blei and Jordan, 2006; Zobay, 2009).

@ Posterior simulation for DP mixture models (and, more generally,
Bayesian nonparametric models) for /arge datasets is an active area of
research — some of the earlier contributions to scalable NPB methods
include Guha (2010) and Wang and Dunson (2011).
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Applications of DP mixture models: some references

Dirichlet process (DP) mixture models, and their extensions, have largely
dominated applied Bayesian nonparametric work, after the technology for
their simulation-based model fitting was introduced. Included below is a
(small) sample of references categorized by methodological/application
area.

@ Density estimation, mixture deconvolution, and curve fitting (West et
al., 1994; Escobar and West, 1995; Cao and West, 1996; Gasparini,
1996; Miiller et al., 1996; Ishwaran and James, 2002; Do et al., 2005;
Leslie et al., 2007; Lijoi et al., 2007).

o Generalized linear, and linear mixed, models (Bush and MacEachern,
1996; Kleinman and lbrahim, 1998a,b; Mukhopadhyay and Gelfand,
1997; Miuller and Rosner, 1997; Quintana, 1998; Kyung, Gill and
Casella, 2010; Hannah et al., 2011).

@ Regression modeling with structured error distributions and/or regres-
sion functions (Brunner, 1995; Lavine and Mockus, 1995; Kottas and
Gelfand, 2001; Dunson, 2005; Kottas and Krnjaji¢, 2009).
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Applications of DP mixture models: some references

@ Regression models for survival /reliability data (Kuo and Mallick, 1997;
Gelfand and Kottas, 2003; Merrick et al., 2003; Hanson, 2006; Argiento
et al., 2009; De lorio et al., 2009).

@ Models for binary and ordinal data (Basu and Mukhopadhyay, 2000;
Hoff, 2005; Das and Chattopadhyay, 2004; Kottas et al., 2005; Shah-
baba and Neal, 2009; DeYoreo and Kottas, 2015a,b).

@ Errors-in-variables models (Miiller and Roeder, 1997); multiple com-
parisons problems (Gopalan and Berry, 1998); analysis of selection
models (Lee and Berger, 1999).

@ Meta-analysis and nonparametric ANOVA models (Mallick and Walker,
1997; Tomlinson and Escobar, 1999; Burr et al., 2003; De lorio et al.,
2004; Miller et al., 2004; Miiller et al., 2005).

e Time series modeling and econometrics applications (Miiller et al.,
1997; Chib and Hamilton, 2002; Hirano, 2002; Hasegawa and Kozumi,
2003; Griffin and Steel, 2004).

e ROC data analysis (Erkanli et al., 2006; Hanson et al., 2008).
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Semiparametric random effects models

o Linear random effects models (e.g., Laird and Ware, 1982) are a widely
used class of models for repeated measurements,

yi:Xiﬁ+Zibi+ei7 izla"'vn

where: y; is the response vector for the i-th subject; 3 is the vector of
fixed effects regression parameters; b; is the vector of random effects;
X; and Z; are covariate matrices associated with the fixed and random
effects, respectively; and €; is the vector of observational errors.

@ It is common to assume that b; is independent from €;, and that
€; ~ N(0,0‘zl).

o Furthermore, it is very common to assume that b; ~ N(0, D), mostly
because of computational convenience.
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Semiparametric random effects models

@ Consider a special case, the random intercepts model:
Vi=ptOite,  0~NOT), e~ N(O,0%),
forj=1,...,mjandi=1,...,n.

@ A Bayesian formulation of this model also includes priors on 1, 72 and
2
o*, e.g,

 ~ N(po, %) 02 ~1G(a, b) 7% ~ 1G(c, d)

(When selecting hyperparameters, recall that an improper prior for o2
would be OK, but improper priors for 72 are not.)

@ When is the assumption of normality for the random effects distribu-
tion reasonable?
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Random effects distributions

o Normality is, in general, an inappropriate assumption for the random
effects distribution.

@ Instead, we would often expect the random effects distribution to
present multimodalities because of the effects of covariates that have
not been included in the model.
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Bayesian semiparametric random effects models

@ Bayesian semiparametric random effects models have been discussed
in Bush and MacEachern (1996), Kleinman and Ibrahim (1998a,b),
Mukhopadhyay and Gelfand (1997), Burr and Doss (2005), and Kyung,
Gill and Casella (2010), in addition to a number of applied papers.

@ General formulation:

y; | B,bj,0? ~ N(X;B + Zb;, 0?1), i=1,...,n
bi| G~ G, i=1,...,n
G | a, D ~ DP(a, N(0, D))
8,02, a,D ~ p(ﬁ,o2,a, D)
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Bayesian semiparametric random intercepts model

@ For the random intercepts model:

vii | 0,0 ~ N(6;,02), j=1....,m;y i=1,...
0; 1 G~ G, i=1,...,n
G | a,p, 7 ~ DP(a, N(p, 72))

with hyperpriors for o> and (some of) the DP parameters (a, 1, 72)
(note that, without loss of generality, we absorbed the intercept p).

@ For @ — 0o we recover the traditional Gaussian random effects model,

whereas for a — 0, the model reduces to a parametric model without
random effects.

@ For values of a in between, the model induces ties among the 6;.
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Fitting linear mixed models in R

e The DPpackage includes functions to fit (generalized) linear mixed
models in which the random effects distribution is assigned a DP
prior.

@ We illustrate with a linear mixed model (function DPlmm).

@ Data corresponds to growth information of 20 preadolescent school-
girls reported by Goldstein (1979, Table 4.3, p. 101). Four variables
are included:

e height: a numeric vector giving the height in cm.

e child: an ordered factor giving a unique identifier for the subject in
the study.

e age: a numeric vector giving the age of the child in years.

e group: a factor with levels 1 (short), 2 (medium), and 3 (tall) giving
the mother category.

@ The height of girls was measured on a yearly basis from age 6 to 10.
The measurements are given at exact years of age.
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Fitting linear mixed models in R

@ We fit the model

yij | (0i, 1), 0% ~ N (0; + x; 31, 0°)
(0i,8i) | G ~ DP (a, N(ps, X))

where

e yj is the j-th height observation for the i-th child.
e Xxj is the age associated with the j-th height observation for the i-th
child.

@ Note that we do not use the variable group in the analysis (it may
be used to add another layer to the hierarchy).

@ Note the syntax of the function call (similar to other functions for
random effects models in R):

DP1lmm(fixed=height ~ 1, random= ~ agel|child,
prior=prior, mcmc=mcmc, state=state, status=FALSE)
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Fitting linear mixed models in R

@ This R code is provided with the help file of DP1mm.

# School Girls Data Example

data(schoolgirls)

attach(schoolgirls)
# Prior information
prior=list(alpha=1,nu0=4.01,tau1=0.01,tau2=0.01,tinv=diag(10,2) ,mub=rep(0,2) ,Sb=diag(1000,2))
# Initial state

state = NULL
# MCMC parameters

nburn=5000

nsave=40000

nskip=20

ndisplay=1000

memc = list(nburn=nburn,nsave=nsave,nskip=nskip,ndisplay=ndisplay)
# Fit the model: First run

fit1=DPlmm(fixed=height ~ 1,random= ~ agelchild,prior=prior,mcmc=mcmc,state=state,status=TRUE)
fitl

# Fit the model: Continuation

state=fiti$state

£it2=DP1mm(fixed=height ~ 1,random= ~ agelchild,prior=prior,mcmc=mcmc,state=state,status=FALSE)
fit2

# Summary with HPD and Credibility intervals

summary (£it2)

summary (£it2,hpd=FALSE)

# Extract expected means of the random effect coefficients

DPrandom(fit2)

# Plot an specific model parameter

quartz()

plot(£it2,ask=FALSE,nfigr=1,nfigc=2,param="sigma- (Intercept)")

quartz()

plot(fit2,ask=FALSE,nfigr=1,nfigc=2,param="ncluster")
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Fitting linear mixed models in R
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Figure 2.3. On the left, trace plot and histogram for the number of clusters generated by DP1mm in the school girls example. On the right,

trace and posterior density plots for the parameters of one of the individuals.

Athanasios Kottas AMS 241, Fall 2015 — Notes 2



Introduction DP mixture models Posterior simulation methods Applications

Curve fitting using Dirichlet process mixtures

@ Two dominant trends in the Bayesian regression literature: seek
increasingly flexible regression function models, and accompany these
models with more comprehensive uncertainty quantification.

@ Typically, Bayesian nonparametric modeling focuses on either the
regression function or the error distribution.

@ Bayesian nonparametric extension of implied conditional regression
(West et al., 1994; Miiller et al., 1996).

o Flexible nonparametric mixture modeling for the joint distribution of
response(s) and covariates.
o Inference for the conditional response distribution given covariates.

@ Both the response distribution and, implicitly, the regression relation-

ship are modeled nonparametrically, thus providing a flexible frame-
work for the general regression problem.
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Curve fitting using Dirichlet process mixtures

@ Focus on univariate continuous response y (though extensions for
categorical and/or multivariate responses also possible).

o DP mixture model for the joint density f(y,x) of the response y and
the vector of covariates x:

Fly.x) = F(y.x| G) = / k(y.x| 0)dG(6). G ~ DP(a Gol1)).

o For the mixture kernel k(y,x | 8) use:
o Multivariate normal for (R-valued) continuous response and
covariates.
o Mixed continuous/discrete distribution to incorporate both categorical
and continuous covariates.
o Kernel component for y supported by R™ for problems in survival/reliability
analysis.
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Curve fitting using Dirichlet process mixtures

e For any grid of values (yo, Xo), obtain posterior samples for:

e Joint density f(yo,%o | G), marginal density f(xo | G), and therefore,
conditional density f(yo | X0, G).

o Conditional expectation E(y | xo, G), which, estimated over grid in x,
provides inference for the mean regression relationship.

e Conditioning in f(yo | X0, G) and/or E(y | xo0, G) may involve only a
portion of vector x.

o Inverse inferences: inference for the conditional distribution of covari-
ates given specified response values, f(xo | yo, G).

o Key features of the modeling approach:
e Model for both non-linear regression curves and non-standard shapes
for the conditional response density.
o Model does not rely on additive regression formulations; it can uncover

interactions between covariates that might influence the regression
relationship.
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Mean regression functional under normal DP mixtures

@ Assume a normal DP mixture for the joint response-covariate density
(univariate response y, covariate vector x = (xi, ..., Xp))

f(y?x | G) = ZWE NP+1(y7x ‘ l*l’bzf)
(=1

o Consider the decomposition of p, = (1, ) and £, = (X, X%, X3)
into components that correspond to the response and covariates.
o Then, f(y | x,G) = X%, qe(x) N(y | Ae(x), 72), where

o qe(x) = weNp(x | g, 27)/{325, wsNp(x | pf, 25)}
° Ne(x) = py + (X)) 7 (x — ) and 7 = X - T(E)THED)T

@ Mean regression function:
‘ X, G Z qf {ﬂO@ + BMXI +...+ 5p€xp}

where o, = pf — TX(X3) "}, and B, for r = 1,...,p, are the
elements of vector *(X}) !
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Synthetic data example

@ Simulated data set with a continuous response y, one continuous
covariate x., and one binary categorical covariate xg4.

o x. independent N(0,1).
e X4i | Xci independent Ber(probit(x)).
o yi | Xci, xdi ind. N(h(xci), 0x;), with oo = 0.25, o1 = 0.5, and
h(xc) = 0.4xc 4+ 0.5sin(2.7xc) + 1.1(1 + x2) .
@ Two sample sizes: n =200 and n = 2000.

@ DP mixture model with a mixed normal/Bernoulli kernel:

Fys xesxd | G) = / Na(y. x| pt, E)m (1 — 7)1 dG (s, £, 7).

with

G ~ DP(a, Go(p, X, ) = No(p; m, V)IW(X; v, S)Beta(r; a, b)).
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Synthetic data example

h(x)
4

Figure 2.4. Posterior point and 90% interval estimates (dashed and dotted lines) for conditional response expectation
E(y | xc, x4 = 0; G) (left panels), E(y | xc, x4 = 1; G) (middle panels), and E(y | xc; G) (right panels). The corresponding data is

plotted in grey for the sample of size n = 200 (top panels) and n = 2000 (bottom panels). The solid line denotes the true curve.
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Quantile regression

@ In regression settings, the covariates may have effect not only on the
location of the response distribution but also on its shape.

@ Model-based nonparametric approach to quantile regression.
o Model joint density f(y, x) of the response y and the M-variate vector
of (continuous) covariates x with a DP mixture of normals:

Fly,x| G) = / Nwia(y,x | 1 £)dG(.E), G ~ DP(a, Go),
with Go(pe, X) = Nyy1(pe | m, V)IW(X | v, S).

@ For any grid of values (yo, Xo), obtain posterior samples for:
o Conditional density f(yo | X0, G) and conditional c.d.f. F(yo | %o, G).
o Conditional quantile regression gp(xo | G), for any 0 < p < 1.

o Key features of the DP mixture modeling framework:
o Enables simultaneous inference for more than one quantile regression.
o Allows flexible response distributions and non-linear quantile
regression relationships.
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Quantile regression: data example

@ Moral hazard data on the relationship between shareholder concen-
tration and several indices for managerial moral hazard in the form of
expenditure with scope for private benefit (Yafeh & Yoshua, 2003).

o Data set includes a variety of variables describing 185 Japanese indus-
trial chemical firms listed on the Tokyo stock exchange.

o Response y: index MH5, consisting of general sales and administrative
expenses deflated by sales.

o Four-dimensional covariate vector x: Leverage (ratio of debt to total
assets); log(Assets); Age of the firm; and TOPTEN (the percent of
ownership held by the ten largest shareholders).
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Quantile regression: data example

Marginal Average Medians with 90% CI

I I ) 02 04 06 08

TOPTEN Leverage

N0 0N W W L T E

Age Log(Assets)

Figure 2.5. Posterior mean and 90% interval estimates for median regression for MH5 conditional on each individual covariate. Data

scatterplots are shown in grey.
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Quantile regression: data example

Marginal Average 90th Percentiles with 90% CI

Moral Hazard
Moral Hazard

TOPTEN Leverage

Moral Hazard
Moral Hazard

e e e e L
N N 4 N0 e 0 s %

Ace LogfAssets)

Figure 2.6. Posterior mean and 90% interval estimates for 90th percentile regression for MH5 conditional on each individual covariate.

Data scatterplots are shown in grey.
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Quantile regression: data example

Figure 2.7. Posterior estimates of median surfaces (left column) and 90th percentile surfaces (right column) for MH5 conditional on

Leverage and TOPTEN. The posterior mean is shown on the top row and the posterior interquartile range on the bottom.
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Quantile regression: data example

Conditional density for MH5

T T 1
10 20 30 40 50 60 70 10 20 30 40 50 60 70
MHS5

Figure 2.8. Posterior mean and 90% interval estimates for response densities f(y | xp; G) conditional on four combinations of values xg

for the covariate vector (TOPTEN, Leverage, Age, log(Assets))
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Curve fitting using Dirichlet process mixtures: applications

@ Regression modeling with categorical responses (Shahbaba and Neal,
2009; Dunson and Bhattacharya, 2011; Hannah et al., 2011; DeYoreo
and Kottas, 2015a,b).

e Functional data analysis through density estimation (Rodriguez et al.,
2009).

@ Markov switching regression (Taddy and Kottas, 2009), and fully
nonparametric quantile regression (Taddy and Kottas, 2010).

@ Product partition models with regression on covariates (Miiller and
Quintana, 2010; Park and Dunson, 2010), and regression modeling
with enriched DP priors (Wade et al., 2014).

@ Nonparametric survival regression (Poynor and Kottas, 2014).
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Modeling for multivariate ordinal data

@ Values of k ordinal categorical variables Vi, ..., Vi recorded for n
subjects:

o C; > 2: number of categories for the j-th variable, j =1,... k.
@ ny,...e,: number of observations such that

V=(W,...,Vi) = (ta,.... L)

o pyy...t, = Pr(Vi=4y,..., Vi = {) is the classification probability for
the (41,...,£4k) cell.

@ The data can be summarized in a k-dimensional contingency table

with C = HJ,'(=1 G cells, with frequencies {ny,...,, } constrained by
Zel.--ek Ng,...e,, = N.
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Modeling for multivariate ordinal data

@ A possible modeling strategy (alternative to log-linear models) in-
volves the introduction of k continuous latent variables Z = (Zy, ..., Zk)
whose joint distribution yields the classification probabilities for the
table cells, i.e.,

k
Pey...e, = Pr m {’Yj,ej—l <Z < VJ,ZJ-}
j=1

for cutoff points —oo = 70 <1 <+ <. ¢-1 <, = oo, for
each j=1,... k (e.g., Johnson and Albert, 1999).

e Common distributional assumption: Z ~ N (0,S) (probit model).
o poe = Corr(Zs,Z:) = 0, s # t, implies independence of the
corresponding categorical variables.
o Coefficients pst, s # t: polychoric correlation coefficients (traditionally
used in the social sciences as a measure of association).
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Modeling for multivariate ordinal data

@ Richer modeling and inference based on normal DP mixtures for the
latent variables Z; associated with data vectors V;, i =1,...,n.

o Model Z; | G i.id. f, with f(- | G) = [ Ni(- | m,S)dG(m,S), where

G| a,\X,D~ DP(a, Go(m,S) = Ng(m | A\, Z)IW(S | v,D))

@ Advantages of the DP mixture modeling approach:
o Can accommodate essentially any pattern in k-dimensional
contingency tables.
o Allows local dependence structure to vary accross the contingency
table.
o Implementation does not require random cutoffs (so the complex
updating mechanisms for cutoffs are not needed).
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Modeling for multivariate ordinal data: data example

@ A data set on Interrater Agreement: data on the extent of scleral
extension (extent to which a tumor has invaded the sclera or “white
of the eye") as coded by two raters for each of n = 885 eyes.

@ The coding scheme uses five categories: 1 for “none or innermost
layers”; 2 for “within sclera, but does not extend to scleral surface”;
3 for “extends to scleral surface”; 4 for “extrascleral extension without
transection”; and 5 for “extrascleral extension with presumed residual
tumor in the orbit”.

@ Results under the DP mixture model (and, for comparison, using also
a probit model).

@ The (0.25,0.5,0.75) posterior percentiles for n* are (6,7,8); in fact,
Pr(n* > 4 | data) = 1.

Athanasios Kottas AMS 241, Fall 2015 — Notes 2



Introduction

Modeling for multivariate ordinal data: data example
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For the interrater agreement data, observed cell relative frequencies (in bold) and posterior
summaries for table cell probabilities (posterior mean and 95% central posterior intervals). Rows
correspond to rater A and columns to rater B.

-3788 3264 .0836 0872 -001T 0013 -001T 0020 -00TT 0008
(.2940, .3586) | (.0696, .1062) | (.0002, .0041) | (.0003, .0055) (.0, .0033)
2102 2136 2803 2817 20079 0.0080 .0079.0070 .0034 0030
(1867, .2404) | (2524, .3112) | (.0033, .0146) | (.0022, .0143) | (.0006, .0074)
-0023 0021 -0045 0060 .0 .0016 -0023.0023 .0.0009
(.0004, .0059) | (.0021,.0118) | (.0004,.0037) | (.0004, .0059) (.0, .0030)
-0034 0043 01130101 -0011.0023 0158 0142 0023 0027
(.0012, .0094) | (.0041,.0185) | (.0004,.0058) | (.0069, .0238) | (.0006, .0066)
-0011.0013 -0079.0071 -0011.0020 -0000.0084 -00347.0039
(.0001, .0044) | (.0026, .0140) | (.0003, .0054) | (.0033,.0159) | (.0011, .0090)
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Modeling for multivariate ordinal data: data example

@ Posterior predictive distributions p(Zo | data) (see Figure 2.9) — DP mixture
version is based on the posterior predictive distribution for corresponding
mixing parameter (mo, So).

@ Inference for the association between the ordinal variables:

e For example, Figure 2.9 shows posteriors for po, the correlation coef-
ficient implied in So.

o The probit model does not capture successfully the association of the
ordinal variables, since it fails to recognize the clustering suggested by
the data (revealed by the DP mixture model).

@ Figure 2.10 shows inferences for log-odds ratios,

i = logpi,j + log pit1,j+1 — log pi,j+1 — log pit1,j.

@ Utility of mixture modeling for this data example: one of the clusters dom-
inates the others, but identifying the other three is important; one of them
corresponds to agreement for large values in the coding scheme; the other
two indicate regions of the table where the two raters tend to agree less
strongly.
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Modeling for multivariate ordinal data: data example

o
o ©
O\
N .
A
v .
5
‘
T T
-4 4
zZ o1 zo1
@ )
© o
= ®
o o
o o
| R B | B B
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
© @

Figure 2.9. For the interrater agreement data, draws from p(Zq | data) and p(pq | data) under the DP mixture model (panels (a) and
(). respectively) and the probit model (panels (b) and (d), respectively).
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Modeling for multivariate ordinal data: data example

12 14 16 18 20 -3 -2 - [ 1 2

cell (1,1) cell (1,3)

2.0
I

1.0

0.0

cell (4,1) cell (4,3)

Figure 2.10. For the interrater agreement data, posteriors for four log-odds ratios under the DP mixture model (solid lines) and the probit

model (dashed lines). The circles denote the corresponding empirical log-odds ratios.
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Nonparametric inference for Poisson processes

@ Point processes are stochastic process models for events that occur
separated in time or space.

@ Applications of point process modeling in traffic engineering, software
reliability, neurophysiology, weather modeling, forestry, ...

@ Poisson processes, along with their extensions (Poisson cluster pro-
cesses, marked Poisson processes, etc.), play an important role in the
theory and applications of point processes. (e.g., Kingman, 1993;
Guttorp, 1995; Moller & Waagepetersen, 2004).

@ Bayesian nonparametric work based on gamma processes, weighted
gamma processes, and Lévy processes (e.g., Lo & Weng, 1989; Kuo
& Ghosh, 1997; Wolpert & Ickstadt, 1998; Gutiérrez-Pefia & Nieto-
Barajas, 2003; Ishwaran & James, 2004).
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Definition of Poisson processes on the real line

e For a point process over time, let N(t) be the number of event
occurrences in the time interval (0, t].

@ The point process N' = {N(t) : t > 0} is a non-homogeneous Poisson
process (NHPP) if:

e For any t > s > 0, N(t) — N(s) follows a Poisson distribution with
mean A(t) — A(s).

o N has independent increments, i.e.,, forany 0 < t1 < th < t3 < ta,
N(t2) — N(t1) and N(ts) — N(t3) are independent random variables.

@ Ais the mean measure (or cumulative intensity function) of the NHPP.

e For any t € R, fo u)du, where X is the NHPP intensity
function — X\ is a non- negatlve and locally integrable function (i.e.,
Jg Mu)du < oo, for all bounded B C RY).

@ So, from a modeling perspective, the main functional of interest for
a NHPP is its intensity function.
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Nonparametric inference for Poisson processes

o Consider a NHPP observed over the time interval (0, T] with events
that occur attimes 0 < 1< b < ... < t, < T.

@ The likelihood for the NHPP intensity function X is proportional to
T n
exp{—/ )\(u)du}H)\(t,-).
0 i=1

o Key observation: f(t) = A(t)/7, where v = fOT A(u)du, is a density
function on (0, T).

@ Hence, a nonparametric prior model for f, with a parametric prior for

~, will induce a semiparametric prior for A — in fact, since ~ only
scales ), it is f that determines the shape of the intensity function .
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Nonparametric inference for Poisson processes

@ Beta DP mixture model for f:
f(6) = (] 6) = [ Beta(t| . 7)dG(1. 7). G ~ DP(a, o)

where Beta(t | p,7) is the Beta density on (0, T) with mean p €
(0, T) and scale parameter 7 > 0, and Go(p,7) = Uni(p | 0, T)
IG(7 | ¢, B) with random scale parameter /3.

o Flexible density shapes through mixing of Betas (e.g., Diaconis and
Ylvisaker, 1985) — Beta mixture model avoids edge effects (a drawback
of the normal DP mixture model in this setting).

o Full Bayesian model:

e y" {H/Beta(fi \ Mi»Ti)dG(NiaTi)} p(7)DP(G | o, Go(B))p(c)p(B)

e Reference prior for v, p(v) o< y71.
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Nonparametric inference for Poisson processes

o Letting @ = {(uj,7):i=1,...,n}, we have
P(7,G,0,a, B | data) = p(v | data)p(G | 6, v, B)p(6, o, B | data)

where:
o p(v | data) is a gamma(n, 1) distribution.

o MCMC is used to sample from p(0, «, 3 | data).

o p(G | 0,c,B) is a DP with updated parameters (can be sampled as
discussed earlier).

@ Full posterior inference for A, A, and any other NHPP functional.

@ Extensions to inference for spatial NHPP intensities, using DP
mixtures with bivariate Beta kernels (Kottas and Sansé, 2007).
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Data examples

@ Example for temporal NHPPs: times of 191 explosions in mines, lead-
ing to coal-mining disasters with 10 or more men killed, over a time
period of 40,550 days, from 15 March 1851 to 22 March 1962.

@ Specification for DP(a, Go(t, 7 | £) = Uni(u | 0, TIG(7T | 2, 5)).
e gamma(aa, ba) prior for a.
e Exponential prior for 5 — its mean can be specified using a prior guess
at the range, R, of the event times t; (e.g., R = T is a possible default
choice).

@ Inference for the NHPP intensity under three prior choices: priors for
B and « based on R = T, E(n*) = 7; R = T, E(n*) ~ 15; and
R=15T, E(n*) = 7.

@ Examples for spatial NHPPs, using two forestry data sets:

o locations of 62 redwood seedlings in a square of 23 m;
o locations of 514 maple trees in a 19.6 acre square plot in Lansing
Woods, Clinton County, MI.
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Data examples
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Figure 2.11. Coal-mining disasters data. Posterior point and 95% interval estimates for the intensity function under three prior settings.

The observed times of the 191 explosions in mines are plotted on the horizontal axis.

Athanasios Kottas AMS 241, Fall 2015 — Notes 2



Introduction DP mixture models Posterior simulation methods Applications

Data examples
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Figure 2.12. Redwood seedlings data. Contour plots of posterior mean intensity estimates under two different priors for c. The dots

indicate the locations of the redwood seedlings.
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Data examples
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Figure 2.13. Maples data. Panels (a) and (b) include the posterior mean intensity estimate (contour and perspective plot, respectively).
Panels (c) and (d) show contour plots for the posterior median and interquartile range intensity estimates, respectively. The dots denote

the locations of the maple trees.
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Nonparametric modeling for NHPPs: further work

@ Applications to neuronal data analysis (Kottas and Behseta, 2010;
Kottas et al., 2012).

@ Inference for marked Poisson processes (Taddy & Kottas, 2012).
@ Dynamic modeling for spatial NHPPs (Taddy, 2010).

@ Risk assessment of extremes from spatially dependent environmental
time series (Kottas et al., 2012) and from correlated financial markets
(Rodriguez et al., 2014).

@ Dynamic modeling for time-varying seasonal intensities, with an ap-
plication to predicting hurricane damage (Xiao et al., 2015).
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