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Parametric vs. nonparametric Bayes: A simple example

Let yi ∈ Y, yi | F ∼iid F , F ∈ F∗,

F∗ = {N(y | µ, τ 2), µ ∈ R, τ ∈ R+}.

In this parametric specification a prior
on F∗ boils down to a prior on (µ, τ 2).

However, F∗ is tiny compared to

F = {All distributions on Y}.

Nonparametric Bayes involves priors
on much larger subsets of F (infinite-
dimensional spaces).

One handy way to do this is to use

stochastic processes.
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Bayesian nonparametrics

Priors on spaces of functions, {g(·) : g ∈ G} (infinite-dimensional
spaces) vs usual parametric priors on Θ, where g(·) ≡ g(·; θ), θ ∈ Θ

In certain applications, we may seek more structure, e.g., monotone
regression functions or unimodal error densities.

Even though we focus on priors for distributions (priors for density
or distribution functions), the methods are more widely useful: haz-
ard or cumulative hazard function, intensity functions, link function,
calibration function ...

More generally, enriching usual parametric models, typically leading
to semiparametric models.

Wandering nonparametrically near a standard class.

Bayesian nonparametrics, an oxymoron? very different from classical
nonparametric estimation techniques.
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Bayesian nonparametrics

What objects are we modeling?

A frequent goal is means (Nonparametric Regression)

Usual approach: g(x ; θ) =
∑K

k=1 θkhk(x)
where {hk(x) : k = 1, ...,K} is a collection of basis functions (splines,
wavelets, Fourier series ...) – very large literature here
An alternative is to use process realizations, i.e., {g(x) : x ∈ X}, e.g.,
g(·) may be a realization from a Gaussian process over X

Main focus: Modeling random distributions

Distributions can be over scalars, vectors, even over a stochastic
process (much more than c.d.f.s).
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Bayesian nonparametrics

Parametric modeling: based on parametric families of distributions
{G (·; θ) : θ ∈ Θ} – requires prior distributions over Θ.

Seek a richer class, i.e., {G : G ∈ G} – requires nonparametric prior
distributions over G.

How to choose G? how to specify the prior over G? – requires
specifying prior distributions for infinite-dimensional parameters.

What makes a nonparametric model “good”? (e.g., Ferguson, 1973)

The model should be tractable, i.e., it should be easily computed,
either analytically or through simulations.
The model should be rich, in the sense of having large support.
The hyperparameters in the model should be easily interpretable.
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Some references

General review papers on Bayesian nonparametrics: Walker, Damien,
Laud and Smith (1999); Müller and Quintana (2004); Hanson, Bran-
scum and Johnson (2005); Müller and Mitra (2013).

Review papers on specific application areas of Bayesian nonparametric
and semiparametric methods: Hjort (1996); Sinha and Dey (1997);
Gelfand (1999).

Books and edited volumes: Dey, Müller and Sinha (1998); Ghosh
and Ramamoorthi (2003); Hjort, Holmes, Müller and Walker (2010);
Müller and Rodriguez (2013); Müller, Quintana, Jara and Hanson
(2015).

Software: functions for nonparametric Bayesian inference are spread
over various R packages. Only comprehensive package we are aware
of is the DPpackage.
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The Dirichlet process as a model for random distributions

A Bayesian nonparametric approach to modeling, say, distribution
functions, requires priors for spaces of distribution functions.

Formally, it requires stochastic processes with sample paths that are
distribution functions defined on an appropriate sample space X (e.g.,
X = R, or R+, or Rd), equipped with a σ-field B of subsets of X
(e.g., the Borel σ-field for X ⊆ Rd)

The Dirichlet process (DP), anticipated in the work of Freedman
(1963) and Fabius (1964), and formally developed by Ferguson (1973,
1974), is the first prior defined for spaces of distributions.

The DP is, formally, a (random) probability measure on the space of
probability measures (distributions) on (X ,B)

Hence, the DP generates random distributions on (X ,B), and thus,
for X ⊆ Rd , equivalently, random c.d.f.s on X
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Constructing priors for spaces of distributions

Defining the prior as a stochastic process with sample paths that are
distributions on (X ,B).

Consistency conditions for the finite dimensional distributions (f.d.d.s)
(see Ferguson, 1973, and Walker et al., 1999).

Let GQ be the space of probability measures (distributions) Q on
(X ,B). Consider a system of f.d.d.s for (Q(B1,1), ...,Q(Bm,k)) for
each finite collection B1,1, ...,Bm,k of pairwise disjoint sets in B. If:

Q(B) is a random variable taking values in [0, 1], for all B ∈ B;

Q(X ) = 1 almost surely; and

(Q(∪k
i=1B1,i ), ...,Q(∪k

i=1Bm,i )) and (
∑k

i=1 Q(B1,i ), ...,
∑k

i=1 Q(Bm,i ))
are equal in distribution

then, there exists a unique (random) probability measure on GQ with
these f.d.d.s.
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Motivating the construction of the Dirichlet process

Suppose you are dealing with a sample space with only two outcomes,
say, X = {0, 1} and you are interested in estimating x , the probability
of observing 1.

A natural prior for x is a beta distribution,

p(x) =
Γ(a + b)

Γ(a)Γ(b)
xa−1(1− x)b−1, 0 ≤ x ≤ 1.

More generally, if X is finite with q elements, the probability distribu-
tion over X is given by q numbers x1, . . . , xq such that

∑q
i=1 xi = 1. A

natural prior for (x1, . . . , xq), which generalizes the Beta distribution,
is the Dirichlet distribution (see the next two slides).

With the Dirichlet process we further generalize to infinite-dimensional
spaces.
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Properties of the Dirichlet distribution

Start with independent random variables

Zj ∼ gamma(aj , 1), j = 1, ..., k,

with aj > 0.

Define

Yj =
Zj∑k
`=1 Z`

, j = 1, ..., k.

Then (Y1, ...,Yk) ∼ Dirichlet(a1, ..., ak).

This distribution is singular w.r.t. Lebesgue measure on Rk , since∑k
j=1 Yj = 1.
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Properties of the Dirichlet distribution

(Y1, ...,Yk−1) has density

Γ
(∑k

j=1 aj
)

∏k
j=1 Γ (aj)

(
1−

∑k−1

j=1
yj

)ak−1 k−1∏
j=1

y
aj−1
j .

Note that for k = 2, Dirichlet(a1, a2) ≡ Beta(a1, a2).

The moments of the Dirichlet distribution are:

E(Yj) =
aj∑k
`=1 a`

, E(Y 2
j ) =

aj(aj + 1)∑k
`=1 a`(1 +

∑k
`=1 a`)

,

E(YiYj) =
aiaj∑k

`=1 a`(1 +
∑k

`=1 a`)
, for i 6= j .

We can think about the Dirichlet as having two parameters:

g = {aj/(
∑k
`=1 a`) : j = 1, ..., k}, the mean vector.

α =
∑k
`=1 a`, a concentration parameter controlling its variance.
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Definition of the Dirichlet process

The DP is characterized by two parameters:

A positive scalar parameter α.
A specified probability measure on (X ,B), Q0 (or, equivalently, a dis-
tribution function on X , G0).

DEFINITION (Ferguson, 1973): The DP generates random proba-
bility measures (random distributions) Q on (X ,B) such that for any
finite measurable partition B1,...,Bk of X ,

(Q(B1), ...,Q(Bk)) ∼ Dirichlet(αQ0(B1), ..., αQ0(Bk)).

Here, Q(Bi ) (a random variable) and Q0(Bi ) (a constant) denote the
probability of set Bi under Q and Q0, respectively.
Also, the Bi , i = 1, ..., k, define a measurable partition if Bi ∈ B, they
are pairwise disjoint, and their union is X .
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Definition of the Dirichlet process

Regarding existence of the DP as a random probability measure, the
key property of the Dirichlet distribution is “additivity”, which results
from the additive property of the gamma distribution: for independent
r.v.s Zr ∼ gamma(ar , 1), for r = 1, 2, Z1 + Z2 ∼ gamma(a1 + a2, 1).

Additive property of the Dirichlet distribution:
if (Y1, ...,Yk) ∼ Dirichlet(a1, ..., ak), and m1, ...,mM are integers such
that 0 < m1 < ... < mM = k , then the random vector

(
m1∑
i=1

Yi ,

m2∑
i=m1+1

Yi , ...,

mM∑
i=mM−1+1

Yi )

has a Dirichlet(
∑m1

i=1 ai ,
∑m2

i=m1+1 ai , ...,
∑mM

i=mM−1+1 ai ) distribution.

Using the additivity property of the Dirichlet distribution, the Kolmogorov
consistency conditions can be established for the f.d.d.s of (Q(B1), ...,Q(Bk))
in the DP definition (refer to Lemma 1 in Ferguson, 1973).
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Interpreting the parameters of the Dirichlet process

For any measurable subset B of X , we have from the definition that
Q(B) ∼ Beta(αQ0(B), αQ0(Bc)), and thus

E {Q(B)} = Q0(B), Var {Q(B)} =
Q0(B){1− Q0(B)}

α + 1

Q0 plays the role of the center of the DP (also referred to as baseline
probability measure, or baseline distribution).

α can be viewed as a precision parameter: for large α there is small
variability in DP realizations; the larger α is, the closer we expect a
realization Q from the process to be to Q0.

See Ferguson (1973) for the role of Q0 on more technical properties of the
DP (e.g., Ferguson shows that the support of the DP contains all probability
measures on (X ,B) that are absolutely continuous w.r.t. Q0).
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Interpreting the parameters of the Dirichlet process

Analogous definition for the random distribution function G on
X ⊆ Rd generated from a DP with parameters α and G0, a spec-
ified distribution function on X .

For example, with X = R, B = (−∞, x ], x ∈ R, and Q(B) = G (x),

G (x) ∼ Beta(αG0(x), α{1− G0(x)}),

and thus

E {G (x)} = G0(x), Var {G (x)} =
G0(x){1− G0(x)}

α + 1
.

Notation: depending on the context, G will denote either the random
distribution (probability measure) or the random distribution function.

G ∼ DP(α,G0) will indicate that a DP prior is placed on G .
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Simulating c.d.f. realizations from a Dirichlet process

The definition can be used to simulate sample paths (which are dis-
tribution functions) from the DP – this is convenient when X ⊆ R.

Consider any grid of points x1 < x2 < ... < xk in X ⊆ R.

Then, the random vector

(G(x1),G(x2)− G(x1), ...,G(xk)− G(xk−1), 1− G(xk))

follows a Dirichlet distribution with parameter vector

(αG0(x1), α(G0(x2)− G0(x1)), ..., α(G0(xk)− G0(xk−1)), α(1− G0(xk)))

Hence, if (u1, u2, ..., uk) is a draw from this Dirichlet distribution,

then (u1, ...,
∑i

j=1 uj , ...,
∑k

j=1 uj) is a draw from the distribution of
(G (x1), ...,G (xi ), ...,G (xk)).

Example (Figure 1.1): X = (0, 1), G0(x) = x , x ∈ (0, 1) (Unif(0, 1)
centering distribution).
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Simulating c.d.f. realizations from a Dirichlet process
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Figure 1.1: C.d.f. realizations from a DP(α, G0 = Unif(0, 1)) for different α values. The solid black line corresponds to the baseline

uniform c.d.f., while the dashed colored lines represent multiple realizations.
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Further references on the Dirichlet process

Early work on study of theoretical properties of the DP; e.g., Kor-
war and Hollander (1973), James and Mosimann (1980), Hannum,
Hollander and Langberg (1981), Doss and Sellke (1982), Lo (1983).

The mean functional, µ(G ) =
∫

tdG (t), G ∼ DP(α,G0), has received
special attention.

It can be shown that if G0 has finite mean, then µ(G) is (almost surely)
finite. In this case, E(µ(G)) = µ(G0) =

∫
tdG0(t).

The distribution of µ(G) has been studied by Yamato (1984),
Cifarelli and Regazzini (1990), Diaconis and Kemperman (1996), and
Regazzini, Guglielmi and Di Nunno (2002).

An extensive review of the work on the DP up to 1990 can be found
in Ferguson, Phadia and Tiwari (1992).
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Constructive definition of the DP

Due to Sethuraman and Tiwari (1982) and Sethuraman (1994).

Let {zr : r = 1, 2, ...} and {ϑ` : ` = 1, 2, ...} be independent
sequences of i.i.d. random variables

zr ∼ Beta(1, α), r = 1, 2, ....
ϑ` ∼ G0, ` = 1, 2, ....

Define ω1 = z1 and ω` = z`
∏`−1

r=1(1− zr ), for ` = 2, 3, ....

Then, a realization G from DP(α,G0) is (almost surely) of the form

G (·) =
∞∑
`=1

ω`δϑ`(·)

where δa(·) denotes a point mass at a.
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Constructive definition of the DP

The DP generates distributions that have an (almost sure) represen-
tation as countable mixtures of point masses:

The locations ϑ` are i.i.d. draws from the base distribution.

The associated weights ω` are defined using the stick-breaking con-
struction.

This is not as restrictive as it might sound: Any distribution on Rd

can be approximated arbitrarily well using a countable mixture of point
masses.

The realizations we showed before already hinted at this fact.

Based on its constructive definition, it is evident that the DP generates
(almost surely) discrete distributions on X (this result was proved,
using different approaches, by Ferguson, 1973, and Blackwell, 1973).
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The stick-breaking construction

Start with a stick of length 1 (representing the total probability to be
distributed among the different atoms).

Draw a random z1 ∼ Beta(1, α), which defines the portion of the orig-
inal stick assigned to atom 1, so that ω1 = z1 — then, the remaining
part of the stick has length 1− z1.

Draw a random z2 ∼ Beta(1, α) (independently of z1), which de-
fines the portion of the remaining stick assigned to atom 2, therefore,
ω2 = z2(1 − z1) — now, the remaining part of the stick has length
(1− z2)(1− z1).

Continue ad infinitum ....

It can be shown that
∑∞

`=1 ω` = 1 (almost surely).
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The stick-breaking construction
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More on the constructive definition of the DP

The DP constructive definition yields another method to simulate
from DP priors — in fact, it provides (up to a truncation approxima-
tion) the entire distribution G , not just c.d.f. sample paths.

For example, a possible approximation is GJ =
J∑

j=1

pjδϑj , with pj = ωj

for j = 1, ..., J − 1, and pJ = 1−
∑J−1

j=1 ωj =
∏J−1

r=1 (1− zr ).

To specify J, a simple approach involves working with the expectation
for the partial sum of the stick-breaking weights:

E

 J∑
j=1

ωj

 = 1−
J∏

r=1

E(1− zr ) = 1−
J∏

r=1

α

α + 1
= 1−

(
α

α + 1

)J

Hence, J could be chosen such that {α/(α + 1)}J = ε, for small ε.
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More on the constructive definition of the DP
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Figure 1.2: Illustration for a DP with G0 = N(0, 1) and α = 20. In the left panel, the spiked lines are located at 1000 N(0, 1) draws

with heights given by the (truncated) stick-breaking weights. These spikes are then summed to generate one c.d.f. sample path. The right

panel shows 8 such sample paths indicated by the lighter jagged lines. The heavy smooth line indicates the N(0, 1) c.d.f.
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Generalizing the DP

Many random probability measures can be defined by means of a
stick-breaking construction – the zr are drawn independently from a
distribution on [0, 1].

For example, the Beta two-parameter process (Ishwaran and Zarepour,
2000) is defined by choosing zr ∼ beta(a, b).

If zr ∼ beta(1 − a, b + ra), for r = 1, 2, . . . and some a ∈ [0, 1) and
b ∈ (−a,∞) we obtain the two-parameter Poisson-Dirichlet process
(e.g., Pitman and Yor, 1997).

The general case, zr ∼ beta(ar , br ) (Ishwaran and James, 2001).

The probit stick-breaking process, where zr = Φ(xr ) with xr ∼ N(µ, σ2)
and Φ denoting the standard normal c.d.f. (Rodŕıguez and Dunson,
2011).
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Further extensions based on the DP constructive definition

The constructive definition of the DP has motivated several of its
extensions, including:

ε-DP (Muliere and Tardella, 1998), generalized DPs (Hjort, 2000);
general stick-breaking priors (Ishwaran and James, 2001).

Dependent DP priors (MacEachern, 1999, 2000; De Iorio et al., 2004;
Griffin and Steel, 2006).

Hierarchical DPs (Tomlinson and Escobar, 1999; Teh et al., 2006).

Spatial DP models (Gelfand, Kottas and MacEachern, 2005; Kottas,
Duan and Gelfand, 2008; Duan, Guindani and Gelfand, 2007).

Nested DPs (Rodriguez, Dunson and Gelfand, 2008).
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Pólya urn characterization of the DP

If, for i = 1, ..., n, xi | G are i.i.d. from G , and G ∼ DP(α,G0), the
joint distribution for the xi , induced by marginalizing G over its DP
prior, is given by

p(x1, ..., xn) = G0(x1)
n∏

i=2

 α

α + i − 1
G0(xi ) +

1

α + i − 1

i−1∑
j=1

δxj (xi )


(Blackwell and MacQueen, 1973).

That is, the sequence of the xi follows a generalized Pólya urn scheme
such that:

x1 ∼ G0, and
for any i = 2, ..., n, xi | x1, ..., xi−1 follows the mixed distribution that
places point mass (α+ i − 1)−1 at xj , j = 1, ..., i − 1, and continuous
mass α(α + i − 1)−1 on G0.
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Pólya urn characterization of the DP

The forward direction described above (i.e., starting with the DP prior
for G ) is readily established using results from Ferguson (1973).

Blackwell and MacQueen (1973) proved the other direction, thus,
characterizing the DP as the de Finetti measure for Pólya sequences.

A sequence of r.v.s, {Xn : n ≥ 1}, (w.l.o.g. on R) is a Pólya sequence
with parameters G0 (a distribution on R) and α (a positive scalar
parameter) if for any measurable B ⊂ R, Pr(X1 ∈ B) = G0(B),
and Pr(Xn+1 ∈ B | X1, ...,Xn) = (α + n)−1{αG0(B) +

∑n
i=1 δXi (B)}

(where δXi (B) = 1 if Xi ∈ B, and δXi (B) = 0 otherwise).

If {Xn : n ≥ 1} is a Pólya sequence with parameters α and G0, then:

(α+ n)−1{αG0 +
∑n

i=1 δXi } converges almost surely (as n→∞) to a
discrete distribution G
G ∼ DP(α,G0)
X1,X2, ... | G are independently distributed according to G .
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The Chinese restaurant process

The Pólya urn characterization of the DP can be visualized using the
Chinese restaurant analogy:

A customer arriving at the restaurant joins a table that already has
some customers, with probability proportional to the number of people
in the table, or takes the first seat at a new table with probability
proportional to α.

All customers sitting in the same table share a dish.
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Prior to posterior updating with DP priors

In what follows, G denotes the random distribution function.

Ferguson (1973) has shown that if the observations yi | G are i.i.d.
from G , i = 1, ..., n, and G ∼ DP(α,G0), then the posterior distribu-
tion of G is a DP(α̃, G̃0), with α̃ = α + n, and

G̃0(t) =
α

α + n
G0(t) +

1

α + n

n∑
i=1

1[yi ,∞)(t)

Hence, the DP is a conjugate prior.

All the results and properties developed for DPs can be used directly
for the posterior distribution of G .

Athanasios Kottas AMS 241, Fall 2015 – Notes 1



Introduction Definition of the DP Constructive definition of the DP Pólya urn Posterior inference MDPs Applications

Prior to posterior updating with DP priors

For example, the posterior mean estimate for G (t),

E {G (t) | y1, ..., yn} =
α

α + n
G0(t) +

n

α + n
Gn(t)

where Gn(t) = n−1
∑n

i=1 1[yi ,∞)(t) is the empirical distribution func-
tion of the data (the standard classical nonparametric estimator).

For small α relative to n, little weight is placed on the prior guess G0.

For large α relative to n, little weight is placed on the data.

Hence, α can be viewed as a measure of faith in the prior guess G0

measured in units of number of observations (thus, α = 1 indicates
strength of belief in G0 worth one observation).

However, taking α very small in order to be “noninformative” is very
dangerous; recall that α controls both the variance and the extent of
discreteness for the DP prior.
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C.d.f. estimation using DP priors
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Figure 1.3: Estimating the distribution function under a DP prior, using simulated data. Both the true distribution generating the data

and the baseline distribution are Gaussian. The left panel corresponds to a sample of n = 10 observations while the right panel

corresponds to a sample of n = 50 observations.
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Some of the early references on inference under DP priors

Construction of confidence bands for the c.d.f. and interval estimates
for the associated mean and quantiles (Breth, 1978, 1979).

Inference for the survival function based on right censored data (Susarla
and van Ryzin, 1976, 1978; Blum and Susarla, 1977) and on grouped
data (Johnson and Christensen, 1986).

Semiparametric survival regression through the accelerated failure time
model (Christensen and Johnson, 1988; Johnson and Christensen,
1989). Inference scope extended through posterior simulation (Kuo
and Smith, 1992).

Variants of the DP can be found in Doss (1985a,b) and Newton,
Czado and Chappell (1996), including applications to median
estimation and binary regression, respectively.
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Mixtures of Dirichlet processes

A random distribution G follows a mixture of Dirichlet processes
(MDP) (Antoniak, 1974) if it arises from a DP, but now conditionally
on random DP prior parameters (random α and/or G0).

The MDP structure extends the DP to a hierarchical setting:

G | α,ψ ∼ DP(α,G0(· | ψ)),

where (parametric) priors are added to the precision parameter α
and/or the parameters of the centering distribution, ψ.

Mixtures of Dirichlet processes are different from Dirichlet process
mixture models, f (· | G ) =

∫
k(· | θ) dG (θ), where k is a parametric

kernel density, and G ∼ DP(α,G0).

However, there are important connections: the posterior distribution
for G follows the MDP structure (Antoniak, 1974).
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Inference for discrete distributions using MDP priors

The MDP can be used as a prior model for discrete distributions F .

As an example, consider a discrete distribution with support on {0, 1, 2, ...},
with observed count responses, data = {yi : i = 1, ..., n}.

MDP prior model with Poisson centering distribution:

yi | F
i.i.d.∼ F , i = 1, ..., n

F | α, λ ∼ DP(α,F0(·) = Poisson(· | λ))
α, λ ∼ π(α)π(λ)

Using results from Antoniak (1974), the joint posterior distribution
for F and (α, λ) can be developed through a DP for the conditional
posterior of F given (α, λ), and the marginal posterior for (α, λ).

Hence, the marginal posterior distribution for F follows the MDP
structure, and thus, the MDP is also a conjugate prior.
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Inference for discrete distributions using MDP priors

Joint posterior: p(F , α, λ | data) = p(α, λ | data)p(F | α, λ, data)
∝ π(α)π(λ)L(α, λ; data)p(F | α, λ, data)

Conditional posterior: p(F | α, λ, data) = DP(α + n, F̃0), where

F̃0(y) =
α

α + n
F0(y | λ) +

1

α + n

n∑
i=1

1[yi ,∞)(y)

Marginal likelihood (expression specific to DP priors with discrete F0):

L(α, λ; data) ∝ αn∗

α(n)

n∗∏
j=1

f0(y∗j | λ){αf0(y∗j | λ) + 1}(nj−1)

f0(· | λ) is the p.m.f. of F0(· | λ)
n∗ is the number of distinct values in (y1, ..., yn)
{y∗

j : j = 1, ..., n∗} are the distinct values in (y1, ..., yn)
nj = |{i : yi = y∗

j }|, for j = 1, ..., n∗

notation: z (m) = z(z + 1)× ...× (z +m−1), for m > 0, with z (0) = 1
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Inference for discrete distributions using MDP priors

Posterior simulation from p(F , α, λ | data) through:
MCMC sampling from p(α, λ | data) ∝ π(α)π(λ)L(α, λ; data); and
simulation from p(F | α, λ, data), using any of the DP definitions.

Posterior predictive distribution:

Pr(Y = y | data) = E{Pr(Y = y | F ) | data}, y = 0, 1, 2, ...

for y ≥ 1, E{Pr(Y = y | F ) | data} = E{F (y)− F (y − 1) | data}
E{Pr(Y = 0 | F ) | data} = E{F (1) − Pr(Y = 1 | F ) | data} =
E{F (1) | data} − Pr(Y = 1 | data)

For any y , the posterior distribution for the random c.d.f. at y , F (y),
can be sampled using the DP definition:

p(F (y) | data) =

∫∫
p(F (y) | α, λ, data)p(α, λ | data) dαdλ

where p(F (y) | α, λ, data) is a Beta distribution with parameters
(α + n)F̃0(y) and (α + n)(1− F̃0(y)).
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Semiparametric regression for categorical responses

Application of DP-based modeling to semiparametric regression with
categorical responses.

Categorical responses yi , i = 1, ...,N (e.g., counts or proportions).

Covariate vector xi for the i-th response, comprising either categorical
predictors or quantitative predictors with a finite set of possible values.

K ≤ N predictor profiles (cells), where each cell k (k = 1, ...,K ) is a
combination of observed predictor values.

k(i) denotes the cell corresponding to the i-th response.

Assume that all responses in a cell are exchangeable with distribution
Fk , k = 1, ...,K .
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Semiparametric regression for categorical responses

Product of mixtures of Dirichlet processes prior (Cifarelli and Regazz-
ini, 1978) for the cell-specific random distributions Fk , k = 1, ...,K :

conditionally on hyperparameters αk and θk , the Fk are assigned inde-
pendent DP(αk ,F0k(·;θk)) priors, where, in general, θk = (θ1k , ..., θDk)
the Fk are related by modeling the αk (k = 1, ...,K) and/or the θdk
(k = 1, ...,K ; d = 1, ...,D) as linear combinations of the predictors
(through specified link functions hd , d = 0, 1, ...,D)
h0(αk) = xT

k γ, k = 1, ...,K
hd(θdk) = xT

k βd , k = 1, ...,K ; d = 1, ...,D
(parametric) priors for the vectors of regression coefficients γ and βd

DP-based prior model that induces dependence in the finite collection
of distributions {F1, ...,FK}, though a weaker type of dependence than
dependent DP priors (MacEachern, 2000). [Dependent nonparametric
prior models will be studied later in the course.]
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Semiparametric regression for categorical responses

Semiparametric structure centered around a parametric backbone
defined by the F0k(·;θk) – useful interpretation and connections with
parametric regression models.

Example: regression model for counts (Carota and Parmigiani, 2002)

yi | {F1, ...,FK} ∼
N∏
i=1

Fk(i)(yi )

Fk | αk , θk
ind.∼ DP(αk ,Poisson(·; θk)), k = 1, ...,K

log(αk) = xTk γ log(θk) = xTk β, k = 1, ...,K

with priors for β and γ

Related work for: change-point problems (Mira and Petrone, 1996);
dose-response modeling for toxicology data (Dominici and Parmigiani,
2001); variable selection in survival analysis (Giudici, Mezzetti and
Muliere, 2003).
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Dose-response modeling with Dirichlet process priors

Quantal bioassay problem: study potency of a stimulus by admin-
istering it at k dose levels to a number of subjects at each level.

xi : dose levels (with x1 < x2 < ... < xk).
ni : number of subjects at dose level i .
yi : number of positive responses at dose level i .

F (x) = Pr(positive response at dose level x) (i.e., the potency of
level x of the stimulus).

F is referred to as the potency curve, or dose-response curve, or
tolerance distribution.

Standard assumption in bioassay settings: the probability of a positive
response increases with the dose level, i.e., F is a non-decreasing
function, i.e., F can be modeled as a c.d.f. on X ⊆ R.
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Dose-response modeling with Dirichlet process priors

Questions of interest:

Inference for F (x) for specified dose levels x .

Inference for unknown (random) dose level x0 such that F (x0) = γ for
specified γ ∈ (0, 1).

Optimal selection of {xi , ni} to best accomplish goals 1 and 2 above
(design problem).

Parametric modeling: F is assumed to be a member of a parametric
family of c.d.f.s (e.g., logit or probit models).

Bayesian nonparametric modeling: nonparametric priors for F , i.e.,
priors for the space of c.d.f.s on X .

Work based on a DP prior for F : Antoniak (1974), Bhattacharya
(1981), Disch (1981), Kuo (1983), Gelfand and Kuo (1991),
Mukhopadhyay (2000).
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Dose-response modeling with Dirichlet process priors

Assuming (conditionally) independent outcomes at different dose

levels, the likelihood is given by
∏k

i=1 pyi
i (1−pi )

ni−yi , where pi = F (xi )
for i = 1, ..., k .

If the prior for F is a DP with precision parameter α > 0 and centering
c.d.f. F0 (the prior guess for the potency curve), then a priori

(p1, p2 − p1, ..., pk − pk−1, 1− pk)

follows a Dirichlet distribution with parameters

(αF0(x1), α(F0(x2)−F0(x1)), ..., α(F0(xk)−F0(xk−1)), α(1−F0(xk))).
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Dose-response modeling with Dirichlet process priors

The posterior for F is an MDP (Antoniak, 1974).

Posterior distribution is difficult to work with analytically; Antoniak
(1974) obtained the point estimate when k = 2.

MCMC techniques enable full inference for the dose-response curve
(Gelfand and Kuo, 1991) and for the dose that corresponds to a
specified probability of response (Mukhopadhyay, 2000).

Bioassay modeling with a DP prior for the dose-response curve is
an example of semiparametric isotonic regression, that is, regression
modeling with monotonic regression functions. Further work with DP
priors for:

continuous response distributions (Lavine and Mockus, 1995)

count responses (Farah, Kottas and Morris, 2013).
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Bayesian nonparametric modeling for cytogenetic dosimetry

Cytogenetic dosimetry (in vitro setting): samples of cell cultures ex-
posed to a range of doses of a given agent — in each sample, at each
dose level, a measure of cell disability is recorded.

Dose-response modeling framework, where “dose” is the form of expo-
sure to radiation, and “response” is the measure of genetic aberration
(in vivo setting, human exposures), or cell disability (in vitro setting,
cell cultures of human lymphocytes)

Focus on (ordered) polytomous categorical responses:

xi : dose levels (with x1 < x2 < ... < xk).

ni : number of cells at dose level i .

yi = (yi1, . . . , yir ): response vector (r ≥ 2 classifications) at dose xi .

Hence, now yi | pi ∼ Mult(ni , pi ), where pi = (pi1, ..., pir ).
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Bayesian nonparametric modeling for cytogenetic dosimetry

Bayesian nonparametric modeling for polytomous response (Kottas,
Branco and Gelfand, 2002).

Consider simple case with r = 3 ⇒ model for pi1 and pi2 is needed.

Model pi1 = F1(xi ) and pi1 + pi2 = F2(xi ), and thus F1(·) ≤ F2(·).

Bayesian nonparametric model requires prior on the space

{(F1,F2) : F1(·) ≤ F2(·)}

of stochastically ordered pairs of c.d.f.s (F1,F2).

Constructive approach: F1(·) = G1(·)G2(·), and F2(·) = G1(·), with
independent DP(α`,G0`) priors for G`, ` = 1, 2.

Induced prior for q` = (q`,1, ..., q`,k), ` = 1, 2, where q`,i = G`(xi ).
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Bayesian nonparametric modeling for cytogenetic dosimetry

Combining with the likelihood, the posterior for (q1, q2) is

p(q1, q2 | data) ∝
∏k

i=1

{
q
yi1+yi2
1i (1− q1i )

yi3q
yi1
2i (1− q2i )

yi2
}

× qγ1−1
11 (q12 − q11)γ2−1...(q1k − q1,k−1)γk−1(1− q1k )γk+1−1

× qδ1−1
21 (q22 − q21)δ2−1...(q2k − q2,k−1)δk−1(1− q2k )δk+1−1

where

γi = α1(G01(xi )− G01(xi−1)), δi = α2(G02(xi )− G02(xi−1)).

Posteriors for G`(xi ) for ` = 1, 2 provide posteriors for F1(xi ) and
F2(xi ), for all xi .
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Bayesian nonparametric modeling for cytogenetic dosimetry

Inference based on an MCMC algorithm.

For any unobserved (but specified) dose level x0, the posterior
distribution for q`,0 = G`(x0) for ` = 1, 2, is given by

p(q`,0 | data) =

∫
p(q`,0 | q`)p(q` | data)dq`

where p(q`,0 | q`) is a rescaled Beta distribution.
The inversion problem (inference for an unknown x0 for specified re-
sponse values y0 = (y01, y02, y03)) can be handled by extending the
MCMC algorithm to the augmented posterior that includes the addi-
tional parameter vector (x0, q10, q20).

For the data illustrations, we compare with a parametric logit model,

log
pij

pi3
= β1j + β2jxi , i = 1, ..., k , j = 1, 2

(model fitting, prediction, and inversion are straightforward under this
model).
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Simulated data examples
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Figure 1.4: Two data sets generated from the parametric model. Posterior inference for F1 (upper panels) and F2 (lower panels) under

the parametric (dashed lines) and nonparametric (solid lines) model. “o” denotes the observed data. The left and right panels correspond

to the data set with the smaller and large sample sizes, respectively.
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Simulated data examples
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Figure 1.5: Two data sets generated using non-standard (bimodal) shapes for F1 and F2. Posterior inference for F1 (upper panels) and

F2 (lower panels) under the parametric (dashed lines) and nonparametric (solid lines) model. “o” denotes the observed data. The left and

right panels correspond to the data set with the smaller and large sample sizes, respectively.
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