
AMS 241: Bayesian Nonparametric Methods (Fall 2015)

Homework set on Dirichlet process mixture models
(due Tuesday November 17)

1. Consider the location normal Dirichlet process (DP) mixture model

f(· | G,φ) =

∫
kN (· | θ, φ) dG(θ), G | α, µ, τ2 ∼ DP(α,G0 = N(µ, τ2)),

where kN (· | θ, φ) denotes the density function of a normal distribution with mean θ and variance
φ. Assume an inv-gamma(aφ, bφ) prior for φ, a gamma(aα, bα) prior for α, and take N(aµ, bµ)
and inv-gamma(aτ2 , bτ2) priors for the mean, µ, and variance, τ2, respectively, of the normal
centering distribution G0. (Here, inv-gamma(a, b) denotes the inverse gamma distribution with
mean b/(a − 1), provided a > 1, and gamma(a, b) denotes the gamma distribution with mean
a/b.) Therefore, the hierarchical version of this semiparametric DP mixture model is given by

yi | θi, φ
ind.∼ kN (yi | θi, φ), i = 1, ..., n

θi | G
i.i.d.∼ G, i = 1, ..., n

G | α, µ, τ2 ∼ DP(α,G0 = N(µ, τ2))
α, µ, τ2, φ ∼ p(α)p(µ)p(τ2)p(φ),

with the (independent) priors p(α), p(µ), p(τ2), p(φ) for α, µ, τ2, φ given above.

To study inference under this model, consider a simulated data set (available from the course
webpage, https://ams241-fall15-01.courses.soe.ucsc.edu/node/7) of size n = 250, gen-
erated from the mixture 0.2N(−5, 1) + 0.5N(0, 1) + 0.3N(3.5, 1).

(1) Obtain the required expressions for the Pólya urn based Gibbs sampler, which can be used
for posterior simulation from p(θ1, ..., θn, α, φ, µ, τ

2 | data), where data = {yi : i = 1, ..., n}.

(2) Discuss specification of the prior hyperparameters for φ, µ, and τ2. Study sensitivity of
posterior inference for φ, µ, and τ2 to the prior choice. In addition to the posterior distributions
for φ, µ, τ2, examine sensitivity of posterior predictive inference (see (5) below).

(3) Obtain the posterior distributions for α and n∗ under different prior choices for α (and
hence for n∗) suggesting, a priori, an increasing number of distinct components for the mixture.
For example, you can consider aα = 2, bα = 15 (E(n∗) ≈ 1), aα = 2, bα = 4 (E(n∗) ≈ 3), aα = 2,
bα = 0.9 (E(n∗) ≈ 10) and aα = 2, bα = 0.1 (E(n∗) ≈ 48). Discuss prior sensitivity analysis
results for α and n∗, as well as for posterior predictive inference (again, see (5) below).

(4) Illustrate the clustering induced by this DP mixture model using the posterior samples for
the θi. For example, you can plot the median and two quantiles from p(θi | data), for i = 1, ..., n.
You can also obtain p(θ0 | data) =

∫
p(θ0 | θ1, ..., θn, α, µ, τ2)p(θ1, ..., θn, α, µ, τ2 | data), that is,

the posterior predictive density for θ0 (associated with a new observation y0).

(5) Obtain the posterior predictive density p(y0 | data) and use it to study how successful
the model is in capturing the distributional shape suggested by the data. Compare also with
the prior predictive density p(y0).



2. Consider the more general location-scale normal DP mixture model

f(· | G) =

∫
kN (· | θ, φ) dG(θ, φ), G | α,ψ ∼ DP(α,G0(ψ)),

with the conjugate normal/inverse-gamma specification for the centering distribution

G0(θ, φ | ψ) = N(θ | µ, φ/κ)× inv-gamma(φ | c, β)

for fixed c and random ψ = (µ, κ, β).

Use the function DPdensity from the DPpackage to fit this model to the same data set with
problem 1. Discuss prior specification for the hyperparameters µ, κ and β. Use appropriate
types of inference to compare the performance of the location-scale normal DP mixture above
with the location normal DP mixture model from problem 1.

3. Consider the data set on the incidence of faults in the manufacturing of rolls of fabric:

http://www.stat.columbia.edu/~gelman/book/data/fabric.asc

where the first column contains the length of each roll, which is the covariate with values xi,
and the second column contains the number of faults, which is the response with values yi, for
i = 1, ..., n, with n = 32.

A Poisson regression is a possible model for such data, where the yi are assumed to arise indepen-
dently, given parameters θ > 0 and β ∈ R, from Poisson distributions with means E(yi | β, θ) =
θ exp(βxi), such that log(θ) is the intercept and β is the slope of a linear regression function
under a logarithmic transformation of the Poisson means. The Bayesian model is completed
with priors for θ and β.

The Poisson regression can be extended in a hierarchical fashion to allow for over-dispersion
relative to the Poisson response distribution. In particular, the response distribution can be
extended to a negative Binomial under the following hierarchical structure:

yi | θi, β
ind.∼ Poisson(yi | θi exp(βxi)), i = 1, ..., n

θi | µ, ζ
i.i.d.∼ gamma(ζ, ζµ−1), i = 1, ..., n

such that the mean of the gamma distribution for the θi is µ and the variance is µ2/ζ. Under
this hierarchical model, E(yi | β, µ, ζ) = µ exp(βxi) and Var(yi | β, µ, ζ) > µ exp(βxi), thus
achieving over-dispersion relative to the Poisson regression model. In this case, the Bayesian
model is completed with priors for β, µ and ζ.

Develop a semiparametric DP mixture regression model for the count responses yi, which in-
cludes as limiting cases both of the parametric regression models discussed above. Discuss prior
specification for your DP mixture model, and implement it for the specific data set (you can use
any MCMC algorithm you wish, but you should write your own code). Compare the inference
for the mean regression function arising from the two parametric models and from the semi-
parametric DP-based extension. Use a model comparison criterion for more formal comparison
of the three models.


